18.409: An Algorithmist’s Toolkit
Jonathan Kelner

New Room?
- Starting on Tuesday, we may have a different room
- I’ll post any info on the course website and e-mail people on signup sheet

Today
- Administrivia
- Course overview
- Start spectral graph theory
Me

- E-mail: kelner@mit.edu
- Offices:
 - Math: 2-372
 - CSAIL: 32-G618
- Office hours
 - Will be settled once people know their schedules
 - Until then, make an appointment by e-mail
- Course website:
 - http://stellar.mit.edu/S/course/18/fa09/18.409/
 - Easier:
 - http://course.mit.edu/18.409
- Class will have a TA

Course Goals

- To learn a collection of powerful (and interrelated) mathematical techniques for algorithm design
 - Topics picked to be both mathematically interesting and practically useful
 - Will sometimes have long mathematical interludes, but always with proportional algorithmic payoffs
- To be able to apply these tools directly to your research
 - Whether your work is theoretical or applied
 - I'll suggest open research questions whenever possible

Requirements and Grading

- I'll try to keep it light
- Scribe notes
 - Aim for quick turnaround
- Problem sets
 - One per major topic
 - Don't have to do all problems

Collaboration Policy

- **Collaboration is encouraged on problems sets**
- Think about the problems yourself first
- Write solutions individually
- Must understand anything you hand in
- Acknowledge collaborators and outside sources
 - Please try not to use outside sources
Listeners

- I’m happy to have people who aren’t taking the class come as listeners
- **If you are planning on listening regularly, please do so officially**
 - It makes me look popular
 - It makes it easier to re-offer similar courses in the future (and to get the right sized room now)

Prerequisites

- Graduate course, so assuming significant level of mathematical maturity
- Not a lot of formal prerequisites though
 - Multivariate calculus
 - Linear algebra
 - Basic algorithms
 - Basic probability
 - Some algorithms beyond intro would help, but not strictly necessary
- If you’re unsure, come talk to me

Main Topics

- Spectral graph theory (8 lectures)
- Iterative methods for linear algebra (2 lectures)
- Convex geometry (7 lectures)
- Multiplicative weights (2 lectures)
- Lattices and basis reduction (3 lectures)
- LPs and SDPs for approximating NP-hard problems (3 lectures)
Spectral Graph Theory

- Develop mathematical theory
 - Graph Laplacians and their eigenvalues
 - Isoperimetric and Cheeger inequalities

- Connect to other fields
 - Markov processes and random walks
 - Continuous differential and convex geometry
 - Expanders and random graphs

- Applications
 - Graph cutting
 - Clustering
 - Approximate counting
 - Disjoint path problems
 - Routing
 - Graph drawing
 - Coding theory (maybe)
 - How Google works (maybe)

Iterative methods for linear algebra

- Use geometric information to quickly solve linear systems and eigenvalue problems
- Basic iterative methods
- Lanczos algorithm
- Conjugate gradients
- Preconditioning
- Speeding up iterative methods with spectral graph theory

Convex geometry

- Mathematical theory
 - Geometric properties of high-dimensional convex bodies
 - Fritz John's theorem and isotropy
 - Brunn-Minkowski and isoperimetric inequalities
 - Concentration of measure

- Connect to other fields
 - Probability theory and large deviations
 - Spectral graph theory

- Applications
 - Volume computation
 - Convex programming

Multiplicative Weights

- Mathematical theory
 - Multiplicative updates meta-algorithm and its analysis
 - Geometric and interpretation of the method

- Connect to other fields
 - Primal-dual methods
 - Learning theory

- Applications
 - Solving zero-sum games
 - Fast approximation algorithms for graph problems
 - Online algorithms
 - Boosting
 - Complexity theory/pseudorandomness (maybe)
Lattices and basis reduction

Mathematical theory
- Basic properties of lattices
- Minkowski’s theorem
- The LLL algorithm for lattice basis reduction

Connect to other fields
- Computational algebra
- Convex geometry

Applications
- Solving low-dimensional integer programs
- Solving some NP-hard problems in practice
- Breaking cryptosystems

LPs and SDPs for approximating NP-hard problems

- Linear and semidefinite programming relaxations of NP-hard problems
- Rounding techniques
- Primal-dual methods

What is Spectral Graph Theory?

- Associate a matrix to a graph
- Diagonalize the matrix
- Hope something useful happens
Reminders about Eigenvalues

- I'll assume you've seen eigenvalues before
 - I might be willing to give a linear algebra session review or make a handout if there's sufficient interest

Definition: Let M be an $n \times n$ matrix. Suppose

$$Mx = \lambda x,$$

$$x \in \mathbb{R}^n, \quad \lambda \in \mathbb{R}$$

We call:
- x an *eigenvector*
- λ its *eigenvalue*

Reminders about Eigenvalues (cont.)

- **If M is symmetric:**
 - You can *diagonalize* it:
 $$M = V \Lambda V^T$$
 - V is orthogonal ($V^T V = \text{Id}$)
 - Columns of V are eigenvectors v_1, \ldots, v_n
 - Λ is diagonal
 - Entries are eigenvalues $\lambda_1, \ldots, \lambda_n$
 - So
 $$M = \sum_{i=1}^{n} \lambda_i v_i v_i^T$$

Reminders about Eigenvalues (cont.)

- **If M is symmetric:**
 - If v and w are eigenvectors of M with *different eigenvalues* then $v \cdot w = 0$
 - If v and w have same eigenvalue, any $q=av+bw$ is an eigenvector too
 - Call span of vcts with same eigenvalue an *eigenspace*
 - M has a full orthonormal basis of eigenvectors v_1, \ldots, v_n
 - All eigenvalues and eigenvectors are *real*
 - All bets are off if M is not symmetric

Matrices for Graphs

- We'll look at a couple different matrices to associate with graphs
 - Adjacency matrix
 - Random walk matrix
 - Laplacian matrix
 - Normalized Laplacian matrix
- Different ones are useful at different times
- Today
Some Notation
- From now on, unless I say otherwise:
 - $G = (V,E)$ is a graph
 - G is undirected, unweighted, no multiple edges or self loops
 - $n = \text{num vertices}$
 - $m = \text{num edges}$

The Adjacency Matrix
- **Definition**: Adjacency matrix $A = A_G$ is $n \times n$ matrix given by

 $A_{i,j} = \begin{cases}
 1 & \text{if } (i, j) \in E \\
 0 & \text{otherwise}
 \end{cases}$

- Clearly symmetric
The Adjacency Matrix (cont.)

\[
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 1 & 0 & 1 \\
2 & 0 & 1 & 0 & 1 \\
3 & 1 & 0 & 0 & 0 \\
4 & 0 & 1 & 1 & 0 \\
5 & 0 & 0 & 0 & 1 \\
\end{array}
\]

The Adjacency Matrix (cont.)

\[
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 1 & 0 & 1 \\
2 & 1 & 0 & 1 & 0 \\
3 & 0 & 1 & 0 & 1 \\
4 & 1 & 0 & 1 & 0 \\
5 & 0 & 0 & 1 & 0 \\
\end{array}
\]

The Laplacian

- For our purposes, a slightly different matrix will often be nicer
- **Definition:** Laplacian matrix \(L = L_G \) is nxn matrix given by

\[
L_{i,j} = \begin{cases}
-1 & \text{if } (i, j) \in E \\
\frac{d_i}{d_j} & \text{if } i = j \\
0 & \text{otherwise}
\end{cases}
\]

where \(d_i \) is degree of \(i \)th vertex
- Also clearly symmetric
The Laplacian (cont.)

- Could also say:
 Let $D = D_G$ be diagonal matrix with i^{th} diagonal entry equal to degree of v_i

$$L_G = D_G - A_G$$
What Does L_G Do to a Vector?

$$[L_G x]_i = \deg(i) \cdot x(i) - \sum_{(i,j) \in E} x(j)$$
$$= \deg(i) \cdot \left(x(i) - \frac{\sum_{(i,j) \in E} x(j)}{\deg(i)} \right)$$
$$= \deg(i) \cdot (x(i) - \text{average of } x \text{ on } i's \text{ neighbors})$$

Implies that for any graph G,

$L_G 1 = 0$

So $x=1$ is an eigenvector with eigenvalue 0.

- We’ll see later that all other eigenvalues are ≥ 0 (>0 for a connected graph)
- So if $\lambda_1 \geq \cdots \geq \lambda_n$ with respective eigenvectors v_1, \ldots, v_n
 - $v_1 = 1$, $\lambda_1 = 0$
 - A lot of info is contained in first few nontrivial eigenvectors.
 - v_2 and v_3 are vectors and thus each gives a map from $G \rightarrow \mathbb{R}$.
 - Let’s use them as coordinates and see what happens.

MATLAB PICTURES