18.409: An Algorithmist’s Toolkit
Lecture 5

Jonathan Kelner

Administrivia
- Reading for this lecture
 - I posted two sources for approximating the permanent
 - The original paper
 - An excerpt from a textbook
 - I had to protect this one for copyright reasons
 - Tell me if you have a problem

Today
- Monte Carlo methods and approximate counting
- Approximately computing the permanent of dense matrices

MONTE CARLO METHODS AND APPROXIMATE COUNTING
Recall from Last Time
- Have some set V of size Z, want to know how many elements are in some subset S
- Pick N points of V uniformly at random
- If q of them are in S, return Zq/k
- Has the right expectation, but how tightly is our estimate concentrated around it?

More from Last Time
- **Chernoff bound**: If you want an ϵ-approximation with probability 1-δ, need
 \[N \geq \Theta\left(\frac{\log \frac{\delta}{\epsilon^2}}{p\epsilon^2}\right) \]
 where p is probability that a sample in your bigger set ends up in your smaller set
- In words: need enough trials to get $\Theta(\log \frac{\delta}{\epsilon^2})$ successes

Potential Problems
- Subset we’re studying is much smaller than ambient space
 - So need a very large number of samples to get a reasonable number of successes
- Have a complicated ambient space from which it’s hard to draw samples
- Today we’ll deal with both types of problems

A Little Terminology
- An ϵ, δ approximation scheme for some quantity is an algorithm for computing an ϵ-approximation with probability at least 1-δ
- A fully polynomial randomized approximation scheme (FPRAS) is an (ϵ,δ) approximation scheme that runs in time $\text{poly}(n, 1/\epsilon, \log 1/\delta)$
A Nontrivial Example: Counting DNF Solutions

- Have boolean variables $x_1, ..., x_n$
 - “Literal” means an x_i or its negation
- Recall that a DNF formula F is a disjunction (OR) of conjunctive (AND) clauses:
 $$F = C_1 \lor ... \lor C_m$$
 where each C_i is an AND of literals, e.g.,
 $$F = (x_1 \land \overline{x_3}) \lor (x_2) \lor (x_2 \land \overline{x_1} \land x_3 \land x_4)$$

Counting DNF Solutions

$$F = (x_1 \land \overline{x_3}) \lor (x_2) \lor (x_2 \land \overline{x_1} \land x_3 \land x_4)$$

- Easy to check if there exists satisfying assignment
- Really hard to exactly count them
 - #P hard (so at least as hard as NP-complete problems)
- We’ll see how to, in poly time, get an ε-approximation with probability $> 1-1/2^n$
 - I.e., a FPRAS

How Not to Do It

- Naive Monte Carlo algorithm
- One trial:
 - Randomly assign 0 or 1 to each x_i
 - Check if this is a satisfying assignment
 - Repeat m times, and say get k successes
 - Estimate
 - # solutions $= (k/m) \cdot 2^n$
 - Why not?
 - #solutions/ 2^n can be exponentially small
 - So need exponentially many trials...

How to Fix the Problem

- Clauses
 - Assignments

<table>
<thead>
<tr>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 1 0 0</td>
</tr>
<tr>
<td>0 1 0 1 1</td>
</tr>
<tr>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>1 1 0 1 1</td>
</tr>
<tr>
<td>0 0 0 1 0</td>
</tr>
<tr>
<td>0 0 0 0 1</td>
</tr>
</tbody>
</table>
How to Fix the Problem

- Want to count yellow boxes
- We’ll:
 1. Sample \(X = \{\text{blue}\} \cup \{\text{yellow}\} \)
 2. Count number yellow we get
 3. Multiply by \(|X| \)
- Now success prob \(\geq \frac{1}{m} \)
- Sample by col instead of by row
- If clause \(i \) has \(k_i \) vars in it, its col has \(2^{n-k_i} \) satisfying assigs (and we know what they are)
- So sample each col proportional to \(2^{n-k_i} \)
- Then pick a random sat. assig. of this clause and see if it’s first in row
- \(|X| = \sum 2^{n-k_i} \)

The Permanent

- Can easily compute in poly time
 \[\det(M) = \sum_{\pi \in S_n} \text{sgn}(\pi) \prod_{i=1}^{n} m_{i, \pi(i)} \]
- Get permanent by dropping the signs
 \[\text{per}(M) = \sum \prod_{\pi \in S_n} m_{i, \pi(i)} \]
- Problem becomes much harder— #P-complete
 - So no poly time algorithm unless \(P = \text{NP} \)
We're going to look at M where all entries are 0 or 1
- Still #P-hard
- Has interpretation as number of perfect matchings in a bipartite graph

This is what we'll try to approximate
- **Surprising result:** Although #P-hard to compute permanent of 0-1 matrices exactly, it has a FPRAS

A (Very) Little History

- **1989:** Jerrum and Sinclair
 - Permanent for *dense* graphs
 - Every vertex has degree at least $n/2$
 - Still #P-complete
- **2001:** Jerrum, Sinclair, and Vigoda
 - Permanent for arbitrary graphs
 - And thus for any matrix with nonnegative entries
- We'll just do the dense case

What Won’t Work

- Can’t do any naive Monte Carlo algorithm
 - E.g., Guess a random permutation and see if it gives a matching
 - Anything like this will require you to estimate exponentially small quantities

General Strategy

- Will look at all (possibly partial) matchings, not just perfect ones
- Let M_k be set of matchings of size k
- Suppose we had a black box for sampling from $M_k \cup M_{k-1}$ uniformly at random for any k
- Let $r_k = |M_k|/|M_{k-1}|$
- Also suppose $1/\alpha \leq r_k \leq \alpha$ for some poly size α
- Can estimate each r_k within relative error $1+1/n^2$ with very high probability
- Estimate answer using $M_n = M_1 \cdot \prod_{i=2}^{n} r_i$
Main question: how do you sample from $M_k \cup M_{k-1}$?

Other issues:
- Will actually only sample approximately uniformly
 - Not a big deal, as long as we’re close enough
- All of our approximations will have probability of failure
 - Just make all of these numbers really small
- Don’t know that there’s a polynomial bound on the r_k
 - This will be guaranteed by our density assumption

Bounding the r_k

Theorem: Let G be a bipartite graph with min degree $\geq n/2$. Then $1/n^2 \leq r_k \leq n^2$ for all k.

Upper bound:
- For every matching in M_k, (arbitrarily) pick a submatching in M_{k-1} as a representative
- No matching in M_{k-1} can be picked more than $(n-k+1)^2 \leq n^2$ times
 - Because has to pick one new edge $= 2$ unmatched vertices
- Implies $|M_k| \leq n^2 |M_{k-1}|$

Bounding the r_k (cont.)

Upper bound follows from:

Lemma: In a graph of min degree $\geq n/2$, every partial matching in M_{k-1} has an augmenting path of length ≤ 3
- That is, you can augment it by either:
 - Adding an edge to the existing matching
 - Removing one edge then adding two more, one hitting each endpoint
- **Proof:** On blackboard
 - Fix some $m \in M_k$
 - At most k matchings in M_{k-1} can be augmented by path of length 1 to equal m
 - At most $k(k-1)$ can be augmented by path of length 3
 - So $|M_{k-1}| \leq k+k(k-1)|M_k| \leq n^2 |M_k|$

Canonical Paths

All that’s left is to show how to sample from $C_k = M_k \cup M_{k-1}$
- Will do this by making a random walk on C_k with uniform stationary distribution and showing it mixes quickly
- Will show this by bounding $\Phi(C_k)$
- Will do so with a general technique known as canonical paths
Let \(G = (V, E) \) be any graph for which want to bound \(\Phi(G) \).

Will be applying this to (exponentially large) \(C_k \).

For every two vertices \(v, w \in V \), will specify a *canonical path* from \(v \) to \(w \).

Suppose no edge occurs on more than \(bn \) paths.

Claim: Implies \(\Phi(G) \geq 1/(2b d_{\text{max}}) \).

Proof:

\[
\Phi(G) = \min_{S \subseteq V} \frac{e(S)}{\min \{ \sum_{v \in S} d(v), \sum_{v \in \bar{S}} d(v) \}}
\]

For any \(S \subseteq V \), # of paths crossing cut is

\[
|S|(n - |S|) \geq |S|n/2
\]

At most \(bn \) paths through each edge, so # of edges crossing cut is \(\geq |S|/2b \).

Bound denominator using max degree.

The Graph \(C_k \)

- Will just do \(C_n \) for now.
- Vertices correspond to matchings in \(M_n \cup M_{n-1} \).
- (Directed) edges of 4 kinds:
 - Reduce: If \(m \in M_n \) and \(e \in m \), go to \(m' = m-e \).
 - Augment: If \(m \in M_{n-1} \) and \(\{u, v\} \) unmatched, move to \(m' = m+\{u,v\} \).
 - Rotate: If \(m \in M_{n-1} \) and \(u \) matched to \(v \), move to \(m' = m+\{u,v\} \).
 - Self loops: Stay where you are; add enough to make degree \(= 2|E| \) at each vertex.
- Want undirected graph—**Reduce** one way = **Augment** the other.

The Canonical Paths

To every node \(s \in M_n \cup M_{n-1} \), associate a “partner” \(s' \in M_n \).

- If \(s \in M_n \), \(s' = s \).
- If \(s \in M_{n-1} \) and has augmenting path of length 1, add corresponding edge to get \(s' \).
- If \(s \in M_{n-1} \) and has shortest augmenting path of length 3, let \(s' \) be matching it gives.

Path from \(s \) to \(t \) will have 3 segments:

\(s \) to \(s' \) (Type A),

\(s' \) to \(t' \) (Type B),

\(t' \) to \(t \) (Type A).
Type A Paths

- Type A paths connect a vertex s to its partner s'.
- If s ∈ M, s = s' and path is empty.
- If s ∈ M_{n-1} with augmenting path of length one, path is of length 1.
 - The edge of the corresponding Augment.
- If s ∈ M_{n-1} with augmenting path of length 3, path will be of length 2.
 - First Rotate, then Augment.
 - Picture on next slide.

Type B Paths

- s and t are each perfect matchings.
- Let d = s ⊖ t (symmetric difference).
- d consists of a collection of disjoint, even-length, alternating cycles of length ≥ 4.
 - Edge of s then t then s then t....
- Path from s to t will “unwind” each cycle.
 - Somehow order the cycles so there’s a canonical order to do this in.
 - Also need to canonically specify a “start” vertex in each cycle.
 - See picture on next slide.
Lemma: Let \(s \in M_n \). At most \(O(n^2) \) other nodes \(s' \in M_n \cup M_{n-1} \) have \(s \) as their partner.

Proof:
- Only one such \(s' \in M_n \)
 - \(s \) itself
 - Otherwise can get to \(s' \) from \(s \) by either a Reduce edge or (Rotate, Augment) pair of edges
- At most \(O(n) \) ways to Reduce, \(O(n^2) \) ways to (Rotate, Augment)

That lets us understand type A paths; let’s now look at type B paths

Fix one transition \(T \) (i.e., an edge of \(C_n \))

We’ll count how many pairs \((s,t) \in M_n \times M_n \) contain \(T \) on their type B canonical path

Claim: Number is \(\leq |C_n| \)
- Implies \(T \) is on \(\leq O(n^2 \cdot |C_n| \cdot n^2) \) canonical paths
- So \(\Phi(C_n) \geq 1/(2n^4 d_{\text{max}}) = \Theta(1/n^6) \)
- Means lazy random walk mixes in poly number of steps, which is what we wanted

More on Counting Canonical Paths
- We’ll bound such pairs by injectively mapping them into \(C_n \)
 - So need a map \(\sigma \) \{ \(s,t \) \} that takes a pair (starting matching, ending matching) \(\rightarrow M_n \cup M_{n-1} \)
 - Given \(T \) and result, need to be able to figure out which \(s \) and \(t \) it came from
- Loosely:
 - \(\sigma_T \) will agree with \(s \) on cycles we’ve already unwound and on part of current cycle we’ve already unwound
 - \(\sigma_T \) will agree with \(t \) elsewhere
- Three cases:
 - \(T = \text{Reduce} \) at beginning of an unwinding
 - \(T = \text{Augment} \) at end of an unwinding
 - \(T = \text{Rotate} \) in the middle
- See next slide for pictures
Dealing with Smaller Matchings

- This was for perfect matchings, but need to get r_k for all k
- Could do similar argument and show mixing
- But a better trick: reduce one problem to the other
- Create a (sufficiently dense) graph G_k whose perfect and near-perfect matchings let you count k- and $(k-1)$-matchings of G

Whole Argument Review

- **General principle:** if we can sample, we can (often) approximately count
- Lots of exponential gaps, so need to go in stages
- Estimate ratios $|M_k|/|M_{k-1}|$ by sampling from $M_k \cup M_{k-1}$
- Sampling directly is hard, so instead take random walk
- Show random walk mixes (i.e., gets close to the uniform distribution) in a polynomial number of steps