18.409: An Algorithmist’s Toolkit
Lecture 7

Jonathan Kelner
Problem set on web site tonight
 ◦ Due two weeks from today

Typos in Powerpoint
 ◦ Someone asked if I could correct them online after lecture
 ◦ I’d be happy to, but I might not remember them after lecture
 ◦ Maybe scribe for lecture could make a list and send it to me?
Today

- Finish nonblocking routing networks
- Local and almost linear-time clustering and partitioning
 - Lovasz-Simonovits Theorem
 - Will sketch some of the proofs
 - Posted readings with details on web site
NONBLOCKING ROUTING NETWORKS
Definition Reminder

- **Definition**: A d-regular bipartite graph is an \((\alpha, \beta)\)-expander if every set \(S\) on the left with \(|S| \leq \alpha n\) has \(N(S) \geq \beta |S|\)
- Whenever \(\alpha \beta < 1\), there exists some \(d\) s.t. almost all d-regular graphs on \(n\) nodes (\(n\) sufficiently large) are \((\alpha, \beta)\) expanders
Routing Networks

- Useful for communications (e.g., phones), massively parallel computers, networks, etc.
- N inputs, N outputs, want to talk to each other simultaneously
- Signals need to be routed along vertex disjoint paths (can’t overload routers)
- Called “a nonblocking routing network” (exact name varies)
 - Pictures from here on taken from paper by Arora, Leighton, and Maggs
- Want graph with $O(N \log N)$ verts that can route any permutation
- Also want fast, decentralized algorithm for finding routing
Butterfly Networks

- Butterfly network has log(N) layers
- i^{th} layer has blocks of size $N/2^i$
- A block splits into “up” and “down” blocks in next layer
- Each node has one edge to “up” block and one edge to “down” block in next layer
- Doesn’t work
Failure of Butterfly Network
- **d-multibutterfly:**
 - Each node has d edges out to “up” and d edges to “down”
 - Graph from, e.g. N to N/2 “up” block form an \((\alpha,\beta)\)-expander, \(\beta > d/2, \beta \approx 1/2\alpha\)
- Only \(2N\alpha\) inputs/outputs
- Actual inputs/outputs connected to \(\alpha/2\) successive multibutterfly inputs/outputs
- Picture of a 2-multibutterfly (hard to draw bigger d)
- **Claim:** Multibutterfly can route any permutation of $2\alpha N$ inputs to $2\alpha N$ outputs
- Proof will use Halls theorem:
- **Theorem:** A bipartite graph G has a perfect matching iff every set S of verts on left has at least $|S|$ nbrs on right
 - i.e., if G is a $(1,1)$-expander
- Will prove claim layer by layer
 - Just talk about first layer, others identical
- At most αN calls need to go to top half, αN to bottom half
 - Let $S = $ set to go to top half, $T = $ top half of next layer
- Need a perfect matching between S and T
- $|S| \leq \alpha N$, so guaranteed by Hall’s Theorem and expansion
Finding the Paths

- In real life, don’t want to have to do complicated global computation for routing—need a simple distributed algorithm
- We’ll describe it for first layer; others are similar
- Suppose $S =$ set of nodes on left that want to match, $R =$ all nodes on right
- Let $S_1 = S$
- **Algorithm:**
 - Repeat until S_i is empty
 - Every node in S_i sends a “proposal” to all neighbors in R
 - Every node in R getting exactly 1 proposal accepts it
 - Every node in S_i that got ≥ 1 accepted proposal picks one arbitrarily and matches to it
 - $S_{i+1} =$ set of unmatched remaining nodes
- **Claim:** Converges in $O(\log n)$ steps
Proof of Convergence Bound

- **Lemma 1:**
 \[
 \frac{|S_{i+1}|}{|S_i|} \leq 2(1 - \beta/d)
 \]
 - Guarantees convergence
 - Follows from:

- **Lemma 2:** For any set S on left of size $\leq \alpha n$, number of verts on right with exactly 1 neighbor in S is at least $(2\beta-d)|S|$
 - **Proof:** Blackboard
 - Any node on left can receive at most d acceptances, from which lemma 1 follows
LOCAL AND ALMOST LINEAR-TIME CLUSTERING AND PARTITIONING
The Problem and Motivation

- Graphs these days are getting really really big
 - Circuit layout has 50 million transistors
 - Scientific computing has hundreds of variables
 - The Internet has billions of nodes
 - Amazon, Google, UPS, etc.

- n^2 is really bad
- Even $n^{1.5}$ probably isn’t good enough

- Two types of goals
 - Algorithms (say, for finding balanced sparse cuts) that run in almost linear time
 - I.e., linear times polylog
 - Local algorithms
Local Clustering

- Given a vertex v of a graph and want to know if it is contained in a cluster
 - I.e., there’s a cut of some given conductance that cuts off a set of vertices containing v
- Want running time to depend on cluster size, not size of graph
 - E.g., find a cluster of web pages around mit.edu
- **Goal:** After running for time almost linear in K, output a cluster of size at least $K/2$ around starting vertex, if it exists
 - Will define a cluster to be a set that can be cut off from the rest of the graph with low conductance
 - Will need starting vertex to be well-contained in cluster
Cuts ↔ eigenvalues ↔ random walks

Suppose you start in a cluster and run a random walk
 ◦ Obstacle to mixing is a low conductance cut
 ◦ Means you have trouble leaving the cluster

So set of vertices that have highest probabilities after a given number of steps are a good guess at a cluster

Approximate these probabilities and take vertices with k highest vals as possible cut
 ◦ Like what we did with v_2, but with probability vector

Keep trying until you get a good cut (or reach some predetermined limit)

Use this as a primitive to construct almost linear global algorithm
 ◦ Powerful primitive with many uses
Obstacles

- We need a bound that says this works
 - All of our bounds are global, involving λ_2 of whole graph
- If we exactly compute all of these probs, will take too long
 - Just too many nonzero entries, so even most rough approximations will take too long
 - But if we don’t exactly compute, need an even stronger bound...
- How good an approx we need depends on cluster size, which we don’t know in advance
The Lovasz-Simonovits Theorem

- Will give us the bound we need for algorithm, but need some notation to define it

- **Interesting idea:** measure progress of walk, not by one number, but by a whole curve
Preliminaries

- Will study edges more than vertices
- Preprocess graph by replacing each edge by two directed edges, \((u,v)\) and \((v,u)\)
- Suppose have prob. dist. \(p\) on vertices
- Let \(\rho(u) = \frac{p(u)}{d_u}\)
 - Goes to \(1/m\) as walk converges
- Let \(\rho(u,v) = \) probability mass about to be sent over \((u,v)\)
- \(\rho(u,v) = \frac{\rho(u)}{d_u}\)
 - So only depends on \(u\)
- Order edges \(e_1, \ldots, e_{2m}\) s.t.
 \[\rho(e_1) \geq \rho(e_2) \geq \ldots \geq \rho(e_{2m}) \]
At equilibrium: $\Sigma d_v = 18$

(9 edges)

$p(u, u) = \frac{3}{18} \cdot \frac{1}{3} = \frac{1}{18}$

$\text{deg} = 3$

$p(v) = \frac{3}{18}$

$p(v) = \frac{1}{18}$
Not at equilibrium

Say \(p(v) = \frac{1}{2} \)

\[
p(v,u) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}
\]

\[
= p(v)
\]

\[
p(v) = \frac{1}{2}
\]

\[
p(v) = \frac{1}{6}
\]

[should be \(\frac{1}{8} \)]
From now on, will assume graph has $d_v/2$ self-loops at all verts v
 ◦ Treat them as normal edges in analysis
Will define a y coordinate for each $x=1,...,2m$
 ◦ Corresponding to first i edges in sorted order
 ◦ Note: lots of multiplicities in the $\rho(e_i)$ list
Will then interpolate piecewise linearly
Curve will measure how close we are to convergence, but contain more info too

Definition: L-S curve given by

$$I(k) = \sum_{i=1}^{k} \rho(e_i)$$
\[I(k) = \sum_{i=1}^{k} \rho(e_i) \]

- “How much probability mass is transported over \(k \) most utilized edges”
 - Should eventually be a straight line
- \(I(2m) = 1 \)
- Slope of \(I \) between \(k \) and \(k+1 \) is given by
 \[I(k+1) - I(k) = \rho(e_{k+1}) \]
- Since \(\rho \) only depends on start vertex of edge, doesn’t matter how we order edges out of \(u \)
- Slope is nonincreasing, so curve is concave
- See Matlab
What We’ll Show

- Let ρ^t, I^t be ρ and L-S curve at time t
- **Claim 1**: For all x and t, $I^t(x) \leq I^{t-1}(x)$
- **Claim 2**: For any $c_1, ..., c_{2m} \leq 1$
 $$\sum_{i=1}^{2m} c_i \rho(e_i) \leq I\left(\sum_{i=1}^{2m} c_i\right)$$
- **Theorem**: For all ρ^0, t, and every $x \in [0, ..., m]$,\[I^t(x) \leq \frac{1}{2} \left(I^{t-1}(x - 2\phi_G x) + I^{t-1}(x + 2\phi_G x) \right) \]
 For $x \in [m+1, ..., n]$,\[I^t(x) \leq \frac{1}{2} \left(I^{t-1}(x - 2\phi_G (2m - x)) + I^{t-1}(x + 2\phi_G (2m - x)) \right) \]
- Will just prove for $x \in [0, ..., m]$
What This Means and Why We Care

- Proof will only use cuts on level sets of ρ^t
- So if walk doesn’t mix quickly, know that one of them has bad conductance

- **Theorem:**

 \[
 I^t(x) \leq \min\left(\sqrt{x}, \sqrt{2m-x}\right) \left(1 - \frac{1}{2} \phi_G^2\right)^t + \frac{x}{2m}
 \]

- **Corollary:** For W a set of verts, $x = \sum_{w \in W} d_w$,

 \[
 \left|\sum_{w \in W} p^t(w) - \pi(w)\right| \leq \min\left(\sqrt{x}, \sqrt{2m-x}\right) \left(1 - \frac{1}{2} \phi_G^2\right)^t
 \]

- Sketch proof and draw on blackboard
Proof of Claim 2

- **Claim 2**: For any $c_1, \ldots, c_{2m} \leq 1$

$$
\sum_{i=1}^{2m} c_i \rho(e_i) \leq I \left(\sum_{i=1}^{2m} c_i \right)
$$

- Terms in sum on left are decreasing
- So only makes sum bigger to add γ to c_i and subtract it from c_j for $i<j$
 - I.e., move mass to the left
- So sum is biggest when first bunch of c_is are 1, next one is the remainder, and rest are 0
- That gives the RHS
Proof of Claim 1

- See blackboard
Proof of Main Theorem

- From now on, assume $x \in [0,...,m]$. Want:
 $$I^t(x) \leq \frac{1}{2} \left(I^{t-1}(x - 2\Phi_G x) + I^{t-1}(x + 2\Phi_G x) \right)$$
- WLOG let $x=k$ cut off after all edges for some set $W=\{u_1,...,u_l\}$
 - Call edges $(u_1,v_1),..., (u_k,v_k)$
 $$\sum_{i=1}^{k} \rho^t(u_i, v_i) = \sum_{i=1}^{k} \rho^{t-1}(v_i, u_i)$$
- Break edges into two sets:
 - $W_1 = (v_i,u_i), \quad u_i, v_i \in W, \quad v_i \neq u_i$
 - $W_2 = (v_i,u_i), \quad u_i \in W, \quad v_i \notin W$
 plus self-loops $(w,w), w \in W$

Claim: $$\sum_{(u,v) \in W_1} \rho^{t-1}(v,u) \leq \frac{1}{2} I^{t-1}(x - 2\Phi x)$$

Will do W_1
• Want $\sum_{(u,v)\in W_1} \rho^{t-1}(v,u) \leq \frac{1}{2}I^{t-1}(x - 2\Phi x)$

• Number of edges in $W_1 \leq x/2 - \Phi x$
 ◦ $x/2$ edges are self-loops
 ◦ At least Φx edges leave W

• So get easier bound from Claim 2:
 $$\sum_{k} \rho^{t-1}(v_i, u_i) \leq I^{t-1}(x/2 - \Phi x)$$
 ◦ Let c_i be 1 for $e \in W_1$, 0 otherwise
 ◦ $\sum c_i \leq x/2 - \Phi x$

• Just need to move 1/2 outside of I^{t-1} somehow
Want \[\sum_{(u,v) \in W_1} \rho^{t-1}(v,u) \leq \frac{1}{2} I^{t-1} (x - 2\Phi x) \]

- \(c_i\)'s can be anything \(\leq 1\) for any \(i \in 1,\ldots,k\) (edges sorted by descending \(\rho\)) with correct sum
- Bound is tighter when more 1's are at beginning
- We put 1 only on edges in \(W_1\), no weight on self-loops (equals \(\geq \frac{1}{2}\) prob mass)
 - Sequence looks something like 1,0,0,1,1,0,0,1
- Tighten bound by putting \(c_i = \frac{1}{2}\) on edges in \(W_1\) and \(\frac{1}{2}\) on self-loops in \(W\)
 - Sequence will now have a lot fewer zeros
 - Can then double everything when applying Claim 2
So

\[
\sum_{(v,u)} c_{(v,u)} \leq x/2 - \Phi x
\]

\[
\sum_{(v,u)\in W_1} \rho^{t-1}(v,u) = \sum_{(v,u)} c_{(v,u)} \rho^{t-1}(v,u)
\]

\[
= \frac{1}{2} \sum_{(v,u)} 2c_{(v,u)} \rho^{t-1}(v,u)
\]

\[
\leq \frac{1}{2} I^{t-1}(x - 2\Phi x)
\]
Using this for Local Clustering

- So if after $O((\log m/\phi)^2)$ steps a set of vertices contains a constant factor more than would under stationary distribution, can get cut C s.t. $\Phi(C) \leq \phi$
 - Use probs to map to real line, and cut like we did with v_2
- **Problem:** Computing all of the probabilities will be way too slow
 - Too many nonzero values
 - Need to somehow zero a lot of them out
- **One solution (S-T):** Zero out small ones and prove it doesn’t hurt too much
 - Analysis is pretty messy
- **Instead (ACL):** Use a slightly different vector: PageRank
 - Next lecture
- **Note:** Also need converse
 - Can show that if exists cut C of cond. ϕ^2, at least $C/2$ of its verts will give cut of cond. ϕ, or else walk would mix too quickly