18.409: An Algorithmist’s Toolkit
Lecture 8

Jonathan Kelner
Problem set posted
 ◦ Hints posted too
Today

- Finish local and almost linear-time clustering and partitioning
- Start sparsification
LOCAL AND ALMOST LINEAR-TIME CLUSTERING AND PARTITIONING
Where We Were Last Time

- Replaced each edge with two directed edges
- Given prob dist. \(p \), defined
 - \(\rho(u) = \frac{p(u)}{d_u} \)
 - \(\rho(u,v) = \rho(u) \)
 - So should all go to \(1/m \) as walk converges
 - Sorted edges s.t. \(\rho(e_1) \geq \rho(e_2) \geq \ldots \geq \rho(e_{2m}) \)
- Defined Lovasz-Simonovits curve by
 \[
 I(k) = \sum_{i=1}^{k} \rho(e_i)
 \]
 (and interpolate other points piecewise linearly)
- Goal was to prove converges to line:

Theorem:

\[
I^t(x) \leq \min \left(\sqrt{x}, \sqrt{2m - x} \right) \left(1 - \frac{1}{2} \phi_G^2 \right)^t + \frac{x}{2m}
\]
What We’ll Show

- Let ρ^t, I^t be ρ and L-S curve at time t
- **Claim 1:** For all x and t, $I^t(x) \leq I^{t-1}(x)$
- **Claim 2:** For any $c_1, c_2, \ldots, c_{2m} \leq 1$
 $$\sum_{i=1}^{2m} c_i \rho(e_i) \leq I \left(\sum_{i=1}^{2m} c_i \right)$$
- **Theorem:** For all p^0, t, and every $x \in [0, \ldots, m]$,
 $$I^t(x) \leq \frac{1}{2} \left(I^{t-1}(x - 2\phi_G x) + I^{t-1}(x + 2\phi_G x) \right)$$
 For $x \in [m+1, \ldots, n]$,
 $$I^t(x) \leq \frac{1}{2} \left(I^{t-1}(x - 2\phi_G(2m - x)) + I^{t-1}(x + 2\phi_G(2m - x)) \right)$$
- Will just prove for $x \in [0, \ldots, m]$
- L-S Theorem follows from this by simple calculation
Proof of Claim 2

- **Claim 2**: For any $c_1, \ldots, c_{2m} \leq 1$

 $$\sum_{i=1}^{2m} c_i \rho(e_i) \leq I \left(\sum_{i=1}^{2m} c_i \right)$$

- Terms in sum on left are decreasing
- So only makes sum bigger to add γ to c_i and subtract it from c_j for $i<j$
 - I.e., move mass to the left
- So sum is biggest when first bunch of c_is are 1, next one is the remainder, and rest are 0
- That gives the RHS
Proof of Claim 1

- See blackboard
Proof of Main Theorem

- From now on, assume $x \in [0,...,m]$. Want:
 $$I^t(x) \leq \frac{1}{2} \left(I^{t-1}(x - 2\phi_G x) + I^{t-1}(x + 2\phi_G x) \right)$$

- WLOG let $x=k$ cut off after all edges for some set $W=\{u_1,...,u_l\}$
 - Call edges $(u_1,v_1),..., (u_k,v_k)$
 $$\sum_{i=1}^{k} \rho^t(u_i, v_i) = \sum_{i=1}^{k} \rho^{t-1}(v_i, u_i)$$

- Break edges into two sets:
 - $W_1 = (v_i,u_i)$, $u_i, v_i \in W$, $v_i \neq u_i$
 - $W_2 = (v_i,u_i)$, $u_i \in W$, $v_i \not\in W$
 plus self-loops (w,w), $w \in W$

Claim: $\sum_{(u,v) \in W_1} \rho^{t-1}(v, u) \leq \frac{1}{2} I^{t-1}(x - 2\Phi x)$

Will do W_1
• Want $\sum_{(u,v) \in W_1} \rho^{t-1}(v, u) \leq \frac{1}{2} I^{t-1}(x - 2\Phi x)$

• Number of edges in $W_1 \leq x/2 - \Phi x$
 ◦ $x/2$ edges are self-loops
 ◦ At least Φx edges leave W

• So get easier bound from Claim 2:
 $\sum_{(u,v) \in W_1} \rho^{t-1}(v, u) \leq I^{t-1}(x/2 - \Phi x)$
 ◦ Let c_i be 1 for $e \in W_1$, 0 otherwise
 ◦ $\sum c_i \leq x/2 - \Phi x$

• Just need to move 1/2 outside of I^{t-1} somehow
Want \[
\sum_{(u, v) \in W_1} \rho^{t-1}(v, u) \leq \frac{1}{2} I^{t-1}(x - 2\Phi x)
\]

- \(c_i\)'s can be anything \(\leq 1\) for any \(i \in 1, \ldots, k\) (edges sorted by descending \(\rho\)) with correct sum
- Bound is tighter when more 1's are at beginning
- We put 1 only on edges in \(W_1\), no weight on self-loops (equals \(\geq \frac{1}{2}\) prob mass)
 - Sequence looks something like 1,0,0,1,1,0,0,1
- Tighten bound by putting \(c_i = \frac{1}{2}\) on edges in \(W_1\) and \(\frac{1}{2}\) on self-loops in \(W\)
 - Sequence will now have a lot fewer zeros
 - Can then double everything when applying Claim 2
\[
\sum_{(v,u)} c_{(v,u)} \leq \frac{x}{2} - \Phi x
\]

So

\[
\sum_{(v,u) \in W_1} \rho^{t-1}(v, u) = \sum_{(v,u)} c_{(v,u)} \rho^{t-1}(v, u)
\]

\[
= \frac{1}{2} \sum_{(v,u)} 2c_{(v,u)} \rho^{t-1}(v, u)
\]

\[
\leq \frac{1}{2} I^{t-1}(x - 2\Phi x)
\]
Local Clustering

- Given a vertex v of a graph and want to know if it is contained in a cluster
 - I.e., there’s a cut of some given conductance that cuts off a set of vertices containing v
- Want running time to depend on cluster size, not size of graph
- **Goal:** After running for time almost linear in K, output a cluster of size at least $K/2$ around starting vertex, if it exists
 - Will need starting vertex to be well-contained in cluster
General Strategy

• Suppose you start in a cluster and run a random walk
 ◦ Obstacle to mixing is a low conductance cut
 ◦ Means you have trouble leaving the cluster

• So set of vertices that have highest probabilities after a given number of steps are a good guess at a cluster
 ◦ Showed this worked with Lovasz-Simonovits Theorem

• Approximate these probabilities and take vertices with k highest vals as possible cut

• Keep trying until you get a good cut (or reach some predetermined limit)

• Use this as a primitive to construct almost linear global algorithm
Obstacles

- We need a bound that says this works
 - This is why we need the L-S theorem
- If we exactly compute all of these probs, will take too long
 - Just too many nonzero entries, so even most rough approximations will take too long
 - But if we don’t exactly compute, need an even stronger bound...
- How good an approx we need depends on cluster size, which we don’t know in advance
Corollary of L-S Theorem

- Proof of L-S used cuts on level sets of ρ^t
- So if walk doesn’t mix quickly, know that one of them has bad conductance

Corollary: For W a set of verts, $x = \sum_{w \in W} d_w$

$$\left| \sum_{w \in W} p^t(w) - \pi(w) \right| \leq \min \left(\sqrt{x}, \sqrt{2m - x} \right) \left(1 - \frac{1}{2} \phi_W^2 \right)^t$$
Using this for Local Clustering

- So if after $O((\log m/\phi)^2)$ steps a set of vertices contains a constant factor more than would under stationary distribution, can get cut C s.t $\Phi(C) \leq \phi$
 - Use probs to map to real line, and cut like we did with v_2

- **Problem:** Computing all of the probabilities will be way too slow
 - Too many nonzero values
 - Need to somehow zero a lot of them out

- **One solution (S-T):** Zero out small ones and prove it doesn’t hurt too much
 - Analysis is pretty messy

- **Instead (ACL):** Use a slightly different vector: PageRank

- **Note:** Also need converse
 - Can show that if exists cut C of cond. ϕ^2, at least $C/2$ of its verts will give cut of cond. ϕ, or else walk would mix too quickly
PageRank Vectors

- Google uses the directed graph version of these
- We’re going to use the undirected version
- Fix a “starting vertex” s
- Fix a “teleport probability” α
- Consider the following process on G, starting at s:

Repeat:
- With probability $(1-\alpha)$, take a step of the lazy random walk on G
- With probability α, jump back to s
More on PageRank

Repeat:

- With probability \(1-\alpha\), take a step of the lazy random walk on \(G\)
- With probability \(\alpha\), jump back to \(s\)

- Converges to a stationary distribution \(\text{pr}_{\alpha}(s)\)
- Unique solution to:

\[
\text{pr}_{\alpha}(s) = \alpha s + (1 - \alpha) W \text{pr}_{\alpha}(s)
\]

(where \(s\) is distrib. that’s 1 on \(s\), 0 elsewhere)

- Could (and will) use other starting distribbs just as easily

- Weights shorter paths more than longer ones
L-S for PageRank

- Can show L-S theorem still holds for PageRank vector starting at s
- So if we knew PageRank vector starting at s, could do same partitioning as with probability vector
 - α corresponds to number of time steps
- If a set S contains more than a const factor more prob under $pr_\alpha(s)$ than under stationary distrib, can find cut with conductance

$$O \left(\sqrt{\alpha \log \left(\sum_{v \in S} d_v \right)} \right)$$

- Robust under small errors
- Get partial converse: if exists cut C of conductance α, at least $\frac{1}{2}$ of verts in C will give cut of cond. $O(\sqrt{\alpha})$
Approximating PageRank

- Use three properties:
 - \(\text{pr}_\alpha(cv + dw) = c \text{pr}_\alpha(v) + d \text{pr}_\alpha(w) \) \ [linearity]\n - \(W\text{pr}_\alpha(s) = \text{pr}_\alpha(WS) \) \ [commutes with W]\n - If \(0 \leq r(v) \leq \varepsilon \) \(v \) for all \(v \),
 \[
 \text{pr}_\alpha(s)(S) \geq \text{pr}_\alpha(s-r)(S) \geq \text{pr}_\alpha(s)(S) - \varepsilon \sum_{v \in S} d_v \] \ [Error bound]\n
- Algorithm will maintain two vects, \(p \) and \(r \)
- \(p \) is approximate answer
- \(r \) is error
- Will maintain invariant \(p = \text{pr}_\alpha(s-r) \)
- Start with \(p=0, r=s \)
Approximating PageRank (cont.)

- If have a vert. u with large error, can spread error out:

 \[
 \begin{align*}
 \text{push}(u): \\
 p' &= p + \alpha r(u) \chi_u \\
 r' &= r - r(u) \chi_u + (1-\alpha) r(u) W \chi_u
 \end{align*}
 \]

 where \(\chi_u \) is the vector that’s 1 at u, 0 elsewhere

- Properties of PageRank show still have invariant
 \[p' = \text{pr}_\alpha (s-r') \]
Approximating PageRank (cont.)

- Repeat while \(r(u) \geq \varepsilon d(u) \) for some \(u \)
 - \(\text{push}(u) \)
- Moves a lot of prob. each step, so can’t happen too many times
 - Decreases \(\| r \|_1 \) by \(\geq \alpha \varepsilon d_i \)
 - \(\| r \|_1 = 1 \) at time 0
 - So does \(O(1 / (\varepsilon \alpha)) \) push ops
 - Support of \(p \) is \(O(1 / [(1-\alpha)\varepsilon]) \)
 - Because at least \(O((1-\alpha)\varepsilon d_v) \) prob remains in \(r(v) \) for any vert. in support

- This gives us the approx we need, so get local partitioning algorithm

- To find cut \(C \), need \(\varepsilon = O(1/(\text{total degree of } C)) \)
- Running time proportional to \((1/\alpha) \cdot (\text{total degree of } C) \)
A Caveat

- In random walk scheme, need to take number of steps like $1/\phi$ to get cut of conductance $\phi^{1/2}$
 - Actually even a little worse than this because of approximations necessary
 - So running time grows like
 \[(\text{size of chunk we cut off}) \cdot \text{poly}(1/\phi)\]
- In PageRank scheme, need running time prop. to $1/\alpha$ to get cut of size $\alpha^{1/2}$
 - So again running time grows like
 \[(\text{size of chunk we cut off}) \cdot \text{poly}(1/\phi)\]
- This will make our algorithm run in time
 \[(\text{nearly linear}) \cdot \text{poly}(1/\phi)\]
- **So only get nearly linear algorithm for $\phi=1/polylog(n)$**
- Getting this to work better is still open
Almost Linear Partitioning

• Suppose $\phi = \text{polylog}(n)$
• Let $\text{vol}(C) = \sum_{v \in C} d_v$
 ◦ Should have done this a few lectures ago...
• If pick random v in a cluster C with conductance ϕ^2, with prob at least $1/2$, will find set of $\text{vol} \geq \text{vol}(C)/2$
 ◦ If use appropriate α and matching ε
 ◦ But you don’t know what’s appropriate
 ◦ Just binary search over possibilities
 • Only multiplies running time by log factor

• So can find globally optimal ϕ (up to usual squaring error times some log factors) by cutting off chunks of graph and repeating
 ◦ Running time is almost linear since cut of C in time almost linear in $\text{vol}(C)$
SPARSIFICATION
Motivation and What We’ll Cover

- Suppose you have a graph G with \(m = \Theta(n^2) \) and want to approximately solve a cut problem (e.g., sparsest cut, min cut, s-t min cut)
- Running time of most algorithms grow with \(m \) and are much slower for dense graphs than sparse ones
- So would be really nice if we could somehow throw out a lot of edges and get a similar answer
 - Then running time would be like that of a sparse graph
 - But, of course, you only get an approximate answer
- Idea: randomized sampling
- This isn’t spectral, but later we’ll see how to use spectral techniques to improve it
Create a new graph \(G' \) by sampling every edge of \(G \) with probability \(p \)

Expected number of edges = \(mp \)

Suppose have a cut \(V = S \cup \overline{S} \) with \(e_G(S) = c \)

Each edge in cut is kept with prob. \(p \)

So expected value of \(e_{G'} = pc \)

By Chernoff bound,

\[
\Pr \left[|e_{G'}(S) - pc| \geq \epsilon pc \right] \leq e^{-\epsilon^2 pc / 2}
\]

So very likely to get about the right answer for sufficiently large cuts
More on First Cut at Algorithm

\[\Pr \left[|e_{G'}(S) - pc| \geq \epsilon pc \right] \leq e^{-\epsilon^2 pc/2} \]

- **Theorem (Karger):** If \(G \) has min cut \(c \), number of cuts less than \(\alpha c \) is less than \(n^{2\alpha} \).

- If \(p = \Omega \left(\frac{d \log n}{\epsilon^2 c} \right) \)

 cut of size \(\alpha c \) is within \((1+\epsilon)\) factor of expectation with probability \(n^{-O(1)\alpha} \) for whatever constant in the exponent we want.

 - So can choose constants so every cut of size \(\alpha c \) is right.
 - So can show every cut is within \((1+\epsilon)\) factor of correct value with probability \(1-n^{-d} \).

 - If \(c \) is small all bets are off
 - A small cut may get badly distorted
 - So need to take very large \(p \)
How to Fix the Problem [B-K]

- Suppose graph has small cut c, but edge e is only involved in cuts of size at least k
 - Will actually need a slightly stronger assumption
- Somehow should only need to sample e as if graph had min cut of size k
 - Then every edge in a cut of size k would be sampled at least enough to give small probability of failure
- So maybe we should sample nonuniformly
 - See picture on blackboard
- **Problem:** Expectation isn’t right anymore
- **Solution:** When you do sample an edge, give it a weight of $1/p$
- Importance sampling
A Slightly More General Chernoff Bound

- We previously had:
- **Theorem (Chernoff Bound):** Let X_1,\ldots,X_n be independent $\{0,1\}$ random variables and $X = \sum_i X_i$.

 Then:

 $$
 \Pr[|X - E[X]| \geq \epsilon X] \leq 2e^{-\Theta(1)\epsilon^2 E[X]}
 $$

- If you look at a proof (or do the homework problem!), can replace $X_i \in \{0,1\}$ with $X_i \in [0,1]$ and theorem’s still true
 - Can’t make the X_i’s too big, or else one can dominate the sum
- Can scale everything up w/o changing anything:
 - Let $Y_i = c X_i$, $Y = \sum Y_i$

 $$
 \Pr[|Y - E[Y]| \geq \epsilon Y] \leq 2e^{-\Theta(1)\epsilon^2 E[Y]/c}
 $$

- So just need to know bound c s.t. all $Y_i \in [0,c]$
Our Case

- Every edge is random variable Y_e
- e gets a weight w_e
- If e is in a cut of size c, require $w_e \leq c$

Earlier version:
- Take all weights = size of min cut
- Let $p = \Omega(\log n/\varepsilon^2)$
- Let $Y_e = 1$ with prob. p/w_e
- Guess that cut size = $\sum_i w_e Y_e$

- Chernoff bound says get ε-approx for given cut with prob $n^{-\Theta(\sum 1/w_e)}$ where sum is over edges in cut

- If have many more edges in cut than min cut, could take bigger w_e’s and smaller probs and still get this cut right with good prob.
Our Case (cont.)

- So, perhaps, take $w_e = $ size of min cut containing e
- Several problems
 - Won’t cover details of how to fix
 - Will post original paper on web site
 - Will give details of stronger scheme next lecture
- **Problem:** Want to union bound over all cuts to show every cut is right
 - Doesn’t quite work, since have a lot of cuts of large size
- **Also:** Don’t know w_e!
- Rough ideas:
 - Can use approx w_e’s instead of exact ones, and can compute these quickly
 - Can use a slightly more conservative weighting scheme
How Many Total Edges Do We Keep?

- Not many small cuts
- Not many edges in each small cut
- So not many edges in small cuts
- In fact, \(\sum_i 1/w_i \leq n-1 \)
 - Depends on \(n \) not \(m! \)
- Rough idea why:
 - Suppose have connected component of min cut \(k \)
 - Removing \(k \) edges cuts it into two pieces
 - Total cost of edges is at most 1
 - Repeat until only have single vertices
 - Add a component each time, so can only do \(n-1 \) times
- So expect to keep only \(\sum_i p/w_i = O(n \log(n)/\varepsilon^2) \) edges
The Result

- When an edge appears, we count it with weight w_i
- Size of every cut in G' is ε-approx of size in G
- So we’ve produced a weighted graph G' with $O(n \log n/\varepsilon^2)$ edges in which every cut is approx the same as in G
- Call this a *combinatorial sparsifier* of G
Let G be our original graph, G' our (weighted) combinatorial sparsifier.

We didn’t really do weighted Laplacians, but I claim that everything is similar:
- Think of just having w_e multiple edges
- Off-diagonal = $-w_e$
- jth diagonal = $\sum_{(i,j) \in E} w_{ij}$

Condition that all cuts are ϵ-approximated is just:

$$(1 - \epsilon)x^T L_{G'} x \leq x^T L_G x \leq (1 + \epsilon)x^T L_{G'} x$$

for all $x = \{-1,1\}^n$

Would be even better if works for all x
- By scaling, same as working for all $x \in [-1,1]^n$

Call this a \textit{spectral sparsifier} of G

Reasonable conjecture: combinatorial sparsifiers are spectral sparsifiers
- \textit{Reasonable, but false!}
A Counterexample

- Edge \((i,j)\) if \(|i-j| \leq k \mod n\)
- Add edge from 0 to \(n/2\)
- Min cut = \(2k\)
- So removing 1 edge gives combinatorial sparsifier with \(\varepsilon = 1/k\)

Let \(x = (0, 1, \ldots, n/2, n/2-1, \ldots, 1, 0)\)

\[
x^T L_G' x = \sum_{(i,j) \in E} (x_i - x_j)^2 = \Theta(nk^3)
\]

\[
x^T L_G x = \sum_{(i,j) \in E} (x_i - x_j)^2 + \left(\frac{n}{2}\right)^2 = \Theta(nk^3) + \frac{n^2}{4}
\]

So need \(\varepsilon = \Omega(n/k^3)\), which can be very big (e.g., for constant \(k\))