A Motivating Example: Weighted Majority

- Suppose want to bet on football game every week
- Before every game, can go on internet and see what “experts” predict
 - Some experts are very good, others are terrible
 - Also, some might be good on some games and bad on others, or be good at the beginning of the year and bad at the end, etc.
 - So quality of expert might change week-to-week
 - And the experts might be arbitrarily correlated
- Want to somehow take all of their opinions into account and figure out which team to bet on
- We’ll show how to make decisions as we go along so that, in hindsight, we perform about as well as the best of the experts
 - This is tricky because we don’t know which one was the best until the end
 - Simple strategies, like following the expert who has done the best so far, don’t work
 - Could have an expert who does well early in the year, but does terribly thereafter
 - E.g., An expert who, this year, always says, “bet on the Giants”...

Weighted Majority Algorithm

- **Initialize:** $w_i^1 = 1$ for all i
- **At step t:**
 - Prediction for step t given by weighted majority of experts
 - If expert i was wrong, set $w_i^{t+1} = (1 - \epsilon)w_i^t$
 - Otherwise, set $w_i^{t+1} = w_i^t$

- Let $m_i^t = \text{number of mistakes made by expert } i \text{ after } t \text{ steps}$
- Let $m^t = \text{number of mistakes we’ve made after } t \text{ steps}$

Theorem

For all t and i,

$$m_i^t \leq \frac{2 \ln n}{\epsilon} + 2(1 + \epsilon)m_i^t$$

- So, in particular, holds when $i = \text{the best expert}$
Theorem
For all \(t \) and \(i \),
\[
m^t \leq \frac{2 \ln n}{\epsilon} + 2(1 + \epsilon)m^t_i
\]

Proof:
- Note that \(w_t^i = (1 - \epsilon)^m^t_i \)
- Define potential function:
 \[
 \Phi^t = \sum_i w_t^i
 \]
 \[
 \Phi^1 = n
 \]
 \[
 \Phi^t \geq w_t^i \text{ for all } t \text{ and } i
 \]
- If we made a mistake, more than half of the (weighted) experts must have been wrong
 - So at least half of the total weight must decrease by factor of \(1 - \epsilon \)
 - So \(\Phi \) decreases by factor of at least \(1 - \epsilon/2 \) each time we make a mistake
- Gives
 \[
 \Phi^t \leq n(1 - \epsilon/2)^m^t
 \]
- So
 \[
 (1 - \epsilon)^m^t_i \leq n(1 - \epsilon/2)^m^t_i
 \]
- Take logs of both sides and use \(-\ln(1 - x) \leq x + x^2 \) for \(x < 1/2 \)

Notes About the Weighted Majority
- Proof was very simple
 - Basically just noted that if an expert is wrong too many times more than the best expert, his weight will get very small
 - Used no assumptions about sequence of events, correlations between experts, experts having consistent quality, non-adversarial inputs, etc.
- Very general analysis idea, which will underly other MW algorithms
- Two main features:
 - Multiplicative update rule
 - Exponential potential function

Removing a Factor of 2
- We showed \(m^t \leq \frac{2 \ln n}{\epsilon} + 2(1 + \epsilon)m^t_i \)
- Dependence on \(\epsilon \) makes sense
 - Bigger \(\epsilon \) means we follow experts more aggressively, so additive term down but mult. error up
- Factor of 2 in second term is unpleasant
 - Won't really matter for algorithmic applications, but is pretty bad in context of making predictions using expert advice
 - Says we make at most twice as many mistakes as best expert (plus an additive term)
- Why is it there?
 - Consider case when 51% of experts say wrong thing, 49% say right thing
 - We always make a mistake in this case, yet only reduce total weight by 1/4
 - Would be better if prob. made a mistake was tied to amount weight is reduced
 - If experts are almost 50/50, we really should just flip a coin
- Suggests new randomized algorithm

Randomized Weighted Majority Algorithm
- At time \(t \), let expert \(i \) have weight \(w_t^i \)
- Play distribution \(D^t = \{p_1^t, \ldots, p_n^t\} \), where
 \[
 p_i^t = \frac{w_t^i}{\sum_k w_k^t}
 \]
- Initialize: \(w_1^i = 1 \) for all \(i \)
- At step \(t \):
 - Pick an expert according to distribution \(D^t \) and use it make prediction
 - If expert \(i \) was wrong, set
 \[
 w_t^{i+1} = (1 - \epsilon)w_t^i
 \]
 - Otherwise, set \(w_t^{i+1} = w_t^i \)
- Same type of analysis shows expected number of errors we make in first \(t \) steps is at most
 \[
 \frac{\ln n}{\epsilon} + \frac{1}{1 - \epsilon} m^t_i < \frac{\ln n}{\epsilon} + (1 + \epsilon)m^t_i \quad \text{when } \epsilon < 1/2
 \]
A More General Setting

- Suppose now set P of events/outcomes no longer binary (and could even be infinite)
- Also, suppose no longer just “right or wrong”, but get arbitrary number as penalty
- If outcome j, expert i pays penalty $M(i, j)$
 - Will assume all $M(i, j) \in [-\ell, \rho]$, for $\ell < \rho$
 - Call ρ the width
- We’ll pick an expert to follow each step
- Our strategy will be randomized
 - Necessary in this new setting
 - Why?
- Want strategy so that expected penalty is not much worse than best expert (in hindsight)
- Maybe doesn’t sound that surprising, but pretty impressive when pick right way to instantiate “experts”
 - E.g., Experts ↔ stocks, probabilities ↔ fractions of a portfolio
 - Says you can buy/sell stocks over time s.t. perform about as well as the single best stock in the portfolio!

- From now on, ϵ will always be $\leq 1/2$
- Let $M(D^i, j^i)$ denote our expected penalty for outcome j^i
- Same type of analysis as before gives

Theorem

For any i and T,

$$\sum_{t=1}^{T} M(D^i, j^i) \leq \frac{\rho \ln(n)}{\epsilon} + (1 + \epsilon) \left[\sum_{j^i \geq 0} M(i, j^i) \right] + (1 - \epsilon) \left[\sum_{j^i < 0} M(i, j^i) \right]$$

where ≥ 0 and < 0 in summations select rounds with penalties of given sign.

- In particular, if we take $\epsilon \leq \min\{ \frac{\rho}{4\ell^2}, \frac{1}{2} \}$ and pick any δ, then after
 $$T = \frac{16\rho^2 \ln(n)}{\delta^2}$$
 rounds, can show average error per round obeys
 $$\frac{\sum_{t=1}^{T} M(D^i, j^i)}{T} \leq \delta + \frac{\sum_{t=1}^{T} M(i, j^i)}{T}$$

- Note dependence of number of rounds on width ρ
- If $\ell = 0$, can actually get running time prop to ρ instead of ρ^2

Multiplicative Weights Update Algorithm

- Initialize: $w^i_1 = 1$ for all i
- At step t:
 - Pick an expert according to distribution D^i and use it make prediction
 - If expert i was wrong, set
 $$w^i_{t+1} = (1 - \epsilon)w^i_t$$
 - Otherwise, set $w^i_{t+1} = w^i_t$
 - Let $j^i \in P$ be outcome
 - Update weight of expert i by:
 $$w^i_{t+1} = \begin{cases} w^i_t(1 - \epsilon)^{M(i, j^i)/\rho} & \text{if } M(i, j^i) \geq 0 \\ w^i_t(1 + \epsilon)^{-M(i, j^i)/\rho} & \text{if } M(i, j^i) < 0 \end{cases}$$

Approximately Solving Zero-Sum Games

- Can use this to construct algorithms by creating appropriate experts and payoffs
- We’ll do a bunch of these
- First example: approximately solving zero-sum games
 - Two players, a “row player R and a “column player C
 - Each has a (possibly different) finite set of pure strategies
 - Given payoff matrix M whose rows are indexed by R’s strategies and whose cols are indexed by C’s strategies
 - If R plays strategy i and C plays strategy j, then payoff from R to C is given by $M(i, j)$
 - For simplicity, let’s assume normalized s.t. all $M(i, j) \in [0, 1]$
 - Allowed to play mixed strategies = probability distributions over strategies
 - Let D and P be row and column mixed strategies, resp.
 - If col player knows D_i, will want to play strategy that gives $\max_j M(D, j)$
 - If row player knows P_i, will want to play strategy that gives $\max_j M(P, j)$
 - von Neumann’s Minimax Theorem says:
 $$\lambda^* := \min_D \max_j M(D, j) = \max_P \min_i M(i, P)$$
 - λ is called value of the game
 - Goal is to find it up to some additive error δ
Approximately Solving Zero-Sum Games with M-W

\[\lambda^* := \min_D \max_j M(D, j) = \max_P \min_i M(i, P) \]

- Experts ↔ pure strategies for \(R \)
- Events ↔ pure strategies for \(C \)
- Penalty paid by expert \(i \) when have event \(j \) is \(M(i, j) \)
- For any given \(D \), we assume know how to find column strategy \(j \) that maximizes \(M(D, j) \)
 - This is always \(\geq \lambda^* \)
- So imagine following scenario, in which play game for many rounds:
 - Every round, we choose a distrib. over experts ↔ mixed strategy \(D \) for \(R \)
 - Get back the worst possible event ↔ col. strat. that maximizes \(M(D, j) \)
 - We pay penalty \(M(D, j) \)
- Exactly setup from earlier, and can choose \(D \) using M-W

Let's see what our M-W analysis gives us

For any distribution \(D \), know \(\sum_t M(D, j_t) \geq \min_i \sum_t M(i, j_t) \)
 - Since distribution is just a weighted average of pure strategies
- Also know that, for all \(t \), our distribution at time \(t \) has \(M(D_t, j_t) \geq \lambda^* \)
 - Since column player plays his best strategy given our choice of \(D \)
- M-W theorem thus gives that, after \(T = 16 \ln(n)/\delta^2 \) rounds and for any \(D \),
 \[\lambda^* \leq \frac{\sum_{t=1}^T M(D_t, j_t)}{T} \leq \delta + \min \left\{ \frac{\sum_{t=1}^T M(i, j_t)}{T} \right\} \leq \delta + \frac{\sum_{t=1}^T M(D_t, j_t)}{T} \]
 - Take \(D = \) optimal row strategy \(D^* \), get \(\lambda^* \leq \frac{\sum_{t=1}^T M(D_t, j_t)}{T} \leq \delta + \lambda^* \)
 - So \(\frac{\sum_{t=1}^T D_t}{T} \) is approximately optimal strategy, and \(\frac{\sum_{t=1}^T M(D_t, j_t)}{T} \) is approximately value of the game
 - Could also have used best \(D_t \) instead of average one

Solving Linear Programs

- It turns out that solving any LP can be cast as solving a zero-sum game
 - Will discuss something even more general next lecture
 - Need to make sure to pay attention to width
- How parameters that dictate rate of convergence compare to ellipsoid or interior point methods is very interesting
- We get error \(\delta \) after something \(O(\ln n/\delta^2) \) iterations
 - Don't forget: in the width 1 case
 - Otherwise, need to throw in a \(\rho^2 \)
- Ellipsoid / IP alg get error \(\delta \) after \(\text{poly}(n) \ln(1/\delta) \)
 - And only depend logarithmically on what would correspond to the width
- So interesting tradeoff: IP alg are much better w.r.t. error and size of numbers, whereas M-W alg are much better w.r.t. dimension.
- More on this next lecture