Today

- Last lecture!
- More multiplicative weights
Last Time

- n experts, set P of events
- If outcome j, expert i pays penalty $M(i, j)$
 - Will assume all $M(i, j) \in [-\ell, \rho]$, for $\ell < \rho$
 - Call ρ the width
- Want strategy so that expected penalty is not much worse than best expert (in hindsight)
At time t, let expert i have weight w^t_i

Play distribution $D^t = \{p_1^t, \ldots, p_n^t\}$, where

$$p_i^t = \frac{w_i^t}{\sum_k w_k^t}$$

Multiplicative Weights Update Algorithm

- **Initialize:** $w_i^1 = 1$ for all i

- **At step t:**
 - Pick an expert according to distribution D^t and use it make prediction
 - Let $j^t \in P$ be outcome
 - Update weight of expert i by:
 $$w_i^{t+1} = \begin{cases}
 w_i^t (1 - \epsilon)^{M(i,j^t)/\rho} & \text{if } M(i,j^t) \geq 0 \\
 w_i^t (1 + \epsilon)^{-M(i,j^t)/\rho} & \text{if } M(i,j^t) < 0
 \end{cases}$$

- If $\epsilon \leq \min\left\{\frac{\delta}{4\rho}, \frac{1}{2}\right\}$, then after $T = \frac{16\rho^2 \ln(n)}{\delta^2}$ rounds, showed avg. error per round obeys

$$\sum_{t=1}^{T} \frac{M(D^t, j^t)}{T} \leq \delta + \sum_{t=1}^{T} \frac{M(i, j^t)}{T}$$
Approximately Solving Zero-Sum Games

- Want to use this to approximately solve zero-sum games
- Two players, a “row player R and a “column player C
- Each has a (possibly different) finite set of pure strategies
- Given payoff matrix M whose rows are indexed by R’s strategies and whose cols are indexed by C’s strategies
- If R plays strategy i and C plays strategy j, then payoff from R to C is given by $M(i, j)$
 - For simplicity, let’s assume normalized s.t. all $M(i, j) \in [0, 1]$
- Allowed to play mixed strategies = probability distributions over strategies
 - Let D and P be row and column mixed strategies, resp.
- von Neumann’s Minimax Theorem says:
 $$\lambda^* := \min_D \max_j M(D, j) = \max_P \min_i M(i, P)$$
- λ is called value of the game
 - Goal is to find it up to some additive error δ
Approximately Solving Zero-Sum Games with M-W

\[\lambda^* := \min_{D} \max_{j} M(D, j) = \max_{P} \min_{i} M(i, P) \]

- Experts ↔ pure strategies for R
- Events ↔ pure strategies for C
- Penalty paid by expert i when have event j is \(M(i, j) \)
- For any given \(D \), we assume know how to find column strategy \(j \) that maximizes \(M(D, j) \)
 - This is always \(\geq \lambda^* \)
- So imagine following scenario, in which play game for many rounds:
 - Every round, we choose a distrib. over experts ↔ mixed strategy \(D \) for R
 - Get back the worst possible event ↔ col. strat. that maximizes \(M(D, j) \)
 - We pay penalty \(M(D, j) \)
- Exactly setup from earlier, and can choose \(D \) using M-W
Approximately Solving Zero-Sum Games with M-W (cont.)

\[\lambda^* := \min_D \max_j M(D, j) = \max_P \min_i M(i, P) \]

- Let's see what our M-W analysis gives us
- For any distribution \(D \), know \(\sum_t M(D, j^t) \geq \min_i \sum_t M(i, j^t) \)
 - Since distribution is just a weighted average of pure strategies
- Also know that, for all \(t \), our distribution at time \(t \) has \(M(D^t, j^t) \geq \lambda^* \)
 - Since column player plays his best strategy given our choice of \(D \)
- M-W theorem thus gives that, after \(T = 16 \ln(n) / \delta^2 \) rounds and for any \(D \),
 \[
 \lambda^* \leq \frac{\sum_{t=1}^T M(D^t, j^t)}{T} \leq \delta + \min_i \left\{ \frac{\sum_{t=1}^T M(i, j^t)}{T} \right\} \leq \delta + \frac{\sum_{t=1}^T M(D, j^t)}{T}
 \]
- Take \(D = \) optimal row strategy \(D^* \), get \(\lambda^* \leq \frac{\sum_{t=1}^T M(D^t, j^t)}{T} \leq \delta + \lambda^* \)
- So \(\frac{\sum_{t=1}^T D^t}{T} \) is approximately optimal strategy, and \(\frac{\sum_{t=1}^T M(D^t, j^t)}{T} \) is approximately value of the game
 - Could also have used best \(D^t \) instead of average one
Solving Linear Programs

- It turns out that solving any LP can be cast as solving a zero-sum game
 - Will discuss something even more general next
 - Need to make sure to pay attention to width
- How parameters that dictate rate of convergence compare to ellipsoid or interior point methods is very interesting
- We get error δ after something $O(\ln n/\delta^2)$ iterations
 - Don’t forget: in the width 1 case
 - Otherwise, need to throw in a ρ^2
- Ellipsoid / IP algs get error δ after $\text{poly}(n) \ln(1/\delta)$
 - And only depend logarithmically on what would correspond to the width
- So interesting tradeoff: IP algs are much better w.r.t. error and size of numbers, whereas M-W algs are much better w.r.t. dimension.
The Plotkin-Shmoys-Tardos Framework

- Instead, let's try approaching optimization problems more directly
- Want to check feasibility of linear program

\[Ax \geq b, \quad x \geq 0, \]

where \(A \) is an \(m \times n \) matrix, and \(x \in \mathbb{R}^n \)
- Will need to construct an oracle that answers the following question:

\[\exists \exists x \geq 0 \quad s.t. \quad c^T x \geq d \]

- Will easily generalize to other problems just by changing oracle
- Will use it with \(c = \sum_i p_i A_i \) and \(d = \sum_i p_i b_i \)

- Constructing the oracle here is very easy
 - Just has one constraint in addition to nonnegativity
 - Only way infeasible is if \(d > 0 \) and all \(c_i < 0 \)
- Will find an approximately feasible solution, i.e., an

\[x \geq 0 \quad s.t. \quad A_i x \geq b_i - \delta \quad \forall i \]
The Plotkin-Shmoys-Tardos Framework (cont.)

- **Want:** \(x \geq 0 \) \(\text{s.t.} \ A_i x \geq b_i - \delta \ \forall i \)
- **Have oracle that answers:** \(\exists? x \geq 0 \text{ s.t. } c^T x \geq d \)
 (with \(c = \sum_i p_i A_i \) and \(d = \sum_i p_i b_i \))

Mapping onto M-W:
- Expert for each of the \(m \) constraints
- Events correspond to points \(x \geq 0 \)
- Penalty for expert \(i \) given event \(x \) is \(A_i x - b_i \)
 - Assume \(A_i x - b_i \in [-\rho, \rho] \) (so width \(\leq \rho \))

So, in each round:
- We pick a distribution over experts \(\leftrightarrow \) weighted sum of constraints
 - \(\sum_i p_i A_i \leq \sum_i p_i b_i \)
- Oracle gives us back a point that satisfies this weighted sum
 - Just one constraint!
- We pay penalty \(\sum_i p_i (A_i - b_i) \) and pick new weights
The Plotkin-Shmoys-Tardos Framework (cont.)

- **Want**: \(x \geq 0 \) s.t. \(A_i x \geq b_i - \delta \ \forall i \)
- **Have oracle that answers**: \(\exists? x \geq 0 \) s.t. \(c^T x \geq d \)

(with \(c = \sum_i p_i A_i \) and \(d = \sum_i p_i b_i \))

- If ever give oracle infeasible query, know original question was infeasible since just giving pos. linear combinations of original constraints
- Otherwise, oracle always gives us back a feasible \(x \), and MW says that \(\forall i \)

\[
\frac{\sum_{t=1}^T \sum_j p_j [A_j x^t - b_j]}{T} \leq \delta + \frac{\sum_{t=1}^T [A_i x^t - b_i]}{T}
\]

after \(T = \frac{16 \rho^2 \ln(n)}{\delta^2} \) rounds
- For so-called “packing and covering” LPs, \(\rho^2 \) becomes a \(\rho \)
- So if take

\[
\bar{x} = \frac{\sum_t x^t}{T},
\]

then \(A_i \bar{x} \geq b_i - \delta \ \forall i \), and have approx solution
Some comments on Plotkin-Shmoys-Tardos

- Note the sign of the penalties: Penalty is higher when constraint is better satisfied
- Idea is that we want higher weight on unsatisfied constraints so that we’re forced to satisfy them better
- **One way to think of this:** We’re really trying to prove constraints are infeasible by deducing an infeasible constraint from them
 - Could interpret as trying to construct a dual solution
 - If never come up with one, MW optimality analysis says one doesn’t exist, up to a δ
- Note that actual solution is average of solutions at each time step
 - Common feature of MW algorithms
- **Can interpret this as a zero-sum game**
 - We want to prove infeasibility, play a positive combination of constraints
 - Other player wants to prove feasibility, plays a point
 - Amount we pay given by how well other player satisfies our comb. of constraints
 - If LP is feasible, game has nonnegative value, and finding optimal strategies gives feasible point
- Can replace $x \geq 0$ with $x \in P$ for any “easy” P for which we can construct oracle for “$\exists x \in P$ s.t. $c^T x \geq d$”
 - Often can implement combinatorially
Boosting

- Question from machine learning
- Have domain X try to learn function $c : X \to \{0, 1\}$ from some concept class C
- Get sequence of training examples $(x, c(x))$, where x comes from some fixed but unknown distribution \mathcal{D} on X
- Goal is to generate a hypothesis $h : X \to \{0, 1\}$
- Error is defined to be $E_{x \sim \mathcal{D}}[|h(x) - c(x)|]$
- Want a strong learning algorithm: For every distribution \mathcal{D} and any given $\epsilon, \delta > 0$, outputs with prob. $\geq 1 - \delta$ a hypothesis whose error is $\leq \epsilon$
- Given γ-weak learning algorithm: Same, but error is $\leq 1/2 - \gamma$
- Boosting shows that if γ-weak learning algorithm exists for C, then a strong learning algorithm exists
- Very useful in both theory and practice for combining weak “rules of thumb” into strong predictions
- We’ll show this in case with fixed training set with N examples and where strong algorithm has small error w.r.t. uniform distribution on the training set
 - Can get general result with a VC dimension argument and proper choice of training set
Boosting (cont.)

- Each round, give a different distribution D^t on examples to weak learning algorithm and get back a hypothesis h^t with error $\leq 1/2 - \gamma$ w.r.t. D^t
- Final hypothesis $h_{\text{final}}(x)$ will be obtained by taking majority vote among $h^1(x), h^2(x), \ldots, h^T(x)$
- Experts ↔ samples in the training set
- Events ↔ hypotheses produced by the weak learning algorithm
- Penalty for expert x on hypothesis h is 1 if $h(x) = c(x)$ and 0 otherwise
 - Want to increase weight of an example if our hypothesis got it wrong
- Start with uniform distribution, and update it according to M-W
- Get that error rate of h_{final} on training set under uniform distribution is $\leq \epsilon$ after

$$T = \frac{2}{\gamma^2} \ln \frac{1}{\epsilon}$$

rounds
- Doing it in general involves sampling to get training set, and that’s where the δ comes from
 - Size N of training set depends on VC dimension of concept class
Approximation Algorithms

- Can also use to get $O(\log n)$ approximation algorithms for many NP-hard problems
 - We’ll do one example, and many others are similar
- Problem is SET COVER:
 - Given universe $U = \{1, \ldots, n\}$ and collection C of subsets of U whose union equals U
 - Want to pick a minimum number of sets from C to cover all of U
- MW will actually end up giving the greedy algorithm and will prove approximation bound
- Experts \leftrightarrow elements of the universe
- Events \leftrightarrow sets $C_j \in C$
- Penalty $M(i, C_j)$ for expert i and set C_j will be 1 if $i \in C_j$ and 0 otherwise
- Will take $\epsilon = 1$ and use update rule

$$w_{i}^{t+1} = w_{i}^{t} (1 - \epsilon M(i, C_j))$$

- Pretty much the same as what we’ve been using, but cleans up analysis a bit
- Gives elements weight 0 if covered by sets chosen so far, 1 otherwise
In each round:

- We pick a set of weights w_1, \ldots, w_n, and thus a distribution with $p_i = w_i / \sum_j w_j$
 - But this will just be the uniform distribution over uncovered elements
- Get maximally adversarial event \leftrightarrow set that covers max number of uncovered elements
- Update our weights
 - Which just means zero out the elements we’ve covered

So our algorithm is really just the greedy one: repeatedly pick the set that covers the most uncovered elements.

For any distribution p_1, \ldots, p_n on the elements, know that OPT sets cover everything:

- I.e., total weights of sets involved w.r.t. the p_i is at least 1
- So at least one set must cover at least $1 / \text{OPT}$ fraction
- Gives $\max_{C_j} \sum_{i \in C_j} p_i \geq 1 / \text{OPT}$

So every round, total penalty drops significantly:

$$\Phi^{t+1} < \Phi^t e^{-\epsilon / \text{OPT}} = \Phi^t e^{-1 / \text{OPT}}$$

- Strict inequality because always get strictly positive penalty
- $\Phi^1 = n$
- So after $\ln n \cdot \text{OPT}$ iterations, $\Phi < 1$, and thus $= 0$
- So cover everything with $\ln n \cdot \text{OPT}$ sets, and thus get $\ln n$ approximation
That's It!

Thanks for coming, and have a great winter vacation!