1 Proposition 4.1

$f = (a, b, c)$ is a quadratic form with discriminant Δ that represents r \textit{primitively}. Then

$$s^2 - \Delta \equiv 0 \pmod{4r}$$

has an integer solution s. Conversely, if Δ is a discriminant to a set of binary forms, and a solution s exists to the equation above, then r is represented by some form.

2 Background

r is \textit{represented} by f if $r = ax^2 + bxy + cy^2$ for some x, y. This is a \textit{primitive representation} if $\gcd(x, y) = 1$.

3 Proof

First, we recognize that if $r = ax^2 + bxy + cy^2$ with $\gcd(x, y) = 1$, we can use the second statement to write that $1 = wx - zy$ for integers w and z. This is the determinant of the matrix

$$M = \begin{bmatrix} x & z \\ y & w \end{bmatrix}$$

Now, let’s see how M acts on our form f. When we take

$$M' = M^T \cdot \begin{bmatrix} a & b \\ b & c \end{bmatrix} \cdot M = \begin{bmatrix} r & \frac{s}{2} \\ \frac{s}{2} & t \end{bmatrix}$$

we see that the term r emerges in the upper left corner. So M' is the matrix of an equivalent form f' of f. Because these two forms are equivalent, f and f' have the same discriminant Δ. Then, we have that

$$s^2 - 4rt = \Delta \Rightarrow s^2 - \Delta \equiv 0 \pmod{4r}$$
The converse is quite obvious. If \(s^2 - \Delta \equiv 0 \ (mod \ 4r) \) we have that
\[
s^2 - 4rt = \Delta
\]
Then, the form \(f = (r, s, t) \) has discriminant \(\Delta \), and clearly represents \(r \) when \(x, y = 1, 0 \)

4 Bigger Picture

This is a basic result about when it is possible to represent an integer \(r \) with a form. So if a set of forms have discriminant \(\Delta \), all we need to check to see if it is possible to represent \(r \) is that \(\Delta \) is a quadratic residue mod \(4r \). However, we won’t know which of the forms with that discriminant represent \(r \). In general, we still do not have the machinery to easily determine what the set of all \(r \) is given a form. Moreover, we don’t know which forms with discriminant \(\Delta \) represent \(r \).

Some interesting results have been shown in this area of mathematics:

Theorem: If a positive definite quadratic form over \(\mathbb{Z} \) represents the following numbers:
\[
1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, 290
\]
then it represents all integers.

From this theorem, we immediately see that there are quadratic forms over some number of variables greater than 2 that represent all integers. In fact, it can be shown that:

Theorem: For each of the aforementioned integers, there exists a quadratic form which represents every integer but that integer.

One might ask the question what’s the minimum number of variables needed to create a universal form that represents every integer. This question has been solved:

Theorem: Four is the minimum number of variables needed to represent every integer. The form \(f = a^2 + b^2 + c^2 + d^2 \) does this. There are exactly 6436 universal quadratic quaternary (over four variables) forms.