1 Subspaces

Let V be a vector space over a field K. We define a vector subspace U in V as a subset $U \subset V$, which satisfies the properties of a vector space, or specifically,

1. $\forall u_1, u_2 \in U, \ u_1 + u_2 \in U$.
2. $\forall u \in U, \ k \in K, \ ku \in U$.

2 Orthogonality

Let v_1, v_2 be vectors in a vector space V over a field K. Suppose there exists a symmetric bilinear form f over V. Then we say v_1 and v_2 are orthogonal with respect to the form f if

$$f(v_1, v_2) = 0$$

2.1 Orthogonal Subspaces

Suppose we have a vector space V over field K, and let f be a symmetric bilinear form over V. Let U_1, U_2 be two subspaces of V. We say that U_1 and U_2 are orthogonal subspaces if $\forall u_1 \in U_1, u_2 \in U_2$,

$$f(u_1, u_2) = 0$$

That is, every vector in U_1 is orthogonal to every vector in U_2.

2.2 Orthogonal Complements

Suppose we have a vector space V over field K, and let f be a symmetric bilinear form over V. Let U be a subspace of V. Define U^0, the orthogonal complement of U, as

$$\{ v \in V \mid \forall u \in U, f(u, v) = 0 \}$$

Proposition 1 U^0 is a subspace of V.

We check the two subspace criteria.
1. Suppose $u_1, u_2 \in U^0$. Then $\forall u \in U, f(u, u_1) = 0$ and $f(u, u_2) = 0$. Then by linearity of the form, we have that $\forall u \in U, f(u, u_1 + u_2) = 0 + 0 = 0$. So $u_1 + u_2 \in U^0$.

2. Suppose $u_0 \in U^0, k \in K$. Then $\forall u \in U, f(u, u_0) = 0$. By linearity of the form, $f(u, ku_0) = k(0) = 0$. Thus, $ku_0 \in U^0$.

Corollary 1 U and U^0 are orthogonal subspaces.

This follows by definition of U^0.

3 Orthogonality and the Radical

We return to the notion of a radical. We first note that V is a subspace of V (trivially). We can consider V^0, or the orthogonal complement of V. We define the kernel, or radical, of the space V with respect to the form f as V^0.

If the kernel only contains 0, then we say that V is nondegenerate with respect to the form f.

We define the radical of a subspace U as the the set of all $u \in U$ such that u is orthogonal to every vector in U. We denote the radical by rad.

4 Some Propositions

Let V be a vector space over K, and f be a symmetric bilinear form over V. Suppose V is nondegenerate with f. Let U be a subspace of V. Then the following are true.

Proposition 2 $\dim U + \dim U^0 = \dim V$

This is left as an exercise to the reader.

Proposition 3 $U^{00} = U$

Proof: Consider $u \in U$. By definition of U^0, u is orthogonal to every u' in U^0. Therefore, $u \in U^{00}$. Thus, $U \in U^{00}$. By the previous proposition, we see that U and U^{00} are both vector spaces with the same dimension, and $U \in U^{00}$, so $U = U^{00}$.

Proposition 4 $\text{rad}(U) = \text{rad}(U^0) = U \cap U^0$

We prove this by showing that both of the radicals are just $U \cap U^0$. Suppose we have $u \in \text{rad}(U)$. Then by definition of the radical, $u \in U$, and by definition of the radical, u is orthogonal to everything in U, so $u \in U^0$. Therefore, $\text{rad}(U) \subset U \cap U^0$. Now suppose $u \in U \cap U^0$. Then u is in U and orthogonal to everything in U, since $u \in U^0$, so $u \in \text{rad}(U)$. So $U \cap U^0 \subset \text{rad}(U)$, so $\text{rad}(U) = U \cap U^0$.

2
Now suppose \(u \in \text{rad}(U^0) \). Then by definition of the radical, \(u \in U^0 \), and \(u \) is orthogonal to everything in \(U^0 \), so \(u \in U^{00} \), which by the previous proposition, is just \(U \). So \(u \in U \), \(u \in U^0 \), so \(u \in U \cap U^0 \), so \(\text{rad}(U^0) \subset U \cap U^0 \). Now suppose \(u \in U \cap U^0 \). By the previous proposition, \(U = U^{00} \), so \(u \in U \) and \(u \in U^{00} \). Therefore, \(u \in U^0 \), and \(u \) is orthogonal to everything in \(U^0 \) since \(u \) is in \(U^{00} \), so we have that \(u \in \text{rad}(U^0) \) by definition of the radical. So \(\text{rad}(U^0) \subset U \cap U^0 \). Therefore \(\text{rad}(U^0) = U \cap U^0 = \text{rad}(U) \), as desired.

5 Orthogonal Decomposition

Recall the definition of the direct sum from the previous presentation. Consider a vector space \(V \) over a field \(K \). Let \(U_1, U_2, \ldots, U_n \) be a set of subspaces of \(V \) such that the following is true

1. \(U_i \) and \(U_j \) are orthogonal subspaces, for \(i \neq j \).
2. \(V = U_1 \oplus U_2 \oplus \ldots \oplus U_n \).

Then we say \(U_1, U_2, \ldots, U_n \) forms an orthogonal decomposition of \(V \).