Class Groups with Binary Quadratic Forms

Mark Wang

November 6, 2017

We will now prove associativity for the composition of equivalence classes of binary quadratic forms. Namely, for primitive quadratic forms f_1, f_2, f_3 with discriminant $D = \Delta$, we prove that $(f_1 \circ f_2) \circ f_3 \sim f_1 \circ (f_2 \circ f_3)$. For the proof, we will first show the lemma that we can find pairwise relatively prime numbers: a_1, a_2, a_3 s.t. a_1, a_2, a_3 s.t. $f_1 \sim (a_1, B, a_2a_3C), f_2 \sim (a_2, B, a_1a_3C), \text{ and } f_3 \sim (a_3, B, a_1a_2C)$.

Lemma 1. Let f_1, f_2, f_3 represent primitive binary quadratic forms with the same discriminant $D = \Delta$. Then, for any f_1, f_2, f_3 we can find pairwise relatively prime integers: a_1, a_2, a_3 s.t. $f_1 \sim (a_1, B, a_2a_3C), f_2 \sim (a_2, B, a_1a_3C), \text{ and } f_3 \sim (a_3, B, a_1a_2C)$ s.t. $B, C \in \mathbb{Z}$.

Proof. The proof utilizes two different propositions which were defined and proved in previous lectures.

Proposition 1. Given any integer m and a primitive form Q, there exists an a_j relatively prime to m such that Q properly represents a_j.

Proposition 2. If Q represents a_j, then Q is equivalent to $Q' = a_jx^2 + b_jxy + c_jy^2$ for some integers b_j, c_j

Let us have (a_1, b_1, c_1) represent f_1. From proposition 1, we can set $m = a_1$, and see that given f_2, there exists a number, which we call a_2 relatively prime to m such that f_2 represents a_2. We then apply proposition 2 to see that there is form $f_2' = (a_2, b_2, c_2) \sim f_2$ for some integers b_2, c_2. Now, let us set $m = a_1, a_2$. We see that given f_3, there exists a number, which we call a_3 relatively prime to m such that f_3 represents a_3. We then apply proposition 3 to see there is form $f_3' = (a_3, b_3, c_3) \sim f_3$ for some integers b_3, c_3.

We now need to find a way to make these forms nice. In order to show this we can use another result proven in a previous lecture.

Proposition 3. If (a_1, b_1, c_1) and (a_2, b_2, c_2) are united, then there are integers B and C such that $(a_1, b_1, c_1) \sim (a_1, B, a_2C), (a_2, b_2, c_2) \sim (a_2, B, a_1C)$

In particular, recall that for the proof of proposition 3, we transformed (a_1, b_1, c_1) by the matrix $\begin{bmatrix} 1 & r_1 \\ 0 & 1 \end{bmatrix}$ and transformed (a_2, b_2, c_2) by the matrix $\begin{bmatrix} 1 & r_2 \\ 0 & 1 \end{bmatrix}$ We see that since the transformation matrix has determinant one, then the resulting transformed binary quadratic forms would be equivalent. Recall that the transformation ”M” is applied on quadratic form ”Q” by
the formula M^{TQM}. The transformation maps (a_1, b_1, c_1) to $(a_1, b_1 + 2a_1 r_1, a_1 r_1^2 + b_1 r_1 + c_1)$ and maps (a_2, b_2, c_2) to $(a_2, b_2 + 2a_2 r_2, a_2 r_2^2 + b_2 r_2 + c_2)$. Thus we see that $B = b_1 + 2a_1 r_1 = b_2 + 2a_2 r_2$, which can be rearranged to $(b_1 - b_2)/2 = a_2 r_2 - a_1 r_1$. Since the GCD of a_1 and a_2 must be equal to 1 (by definition), then by Bezout’s theorem, we know that there is a solution for r_1, r_2. Since a_1 and a_2 are relatively prime, then $B = B_0 + 2a_1 a_2 \ast k$, where B_0 represents an initial solution and k represents an integer. Meanwhile, we see that if we applied transformation matrix \[
\begin{bmatrix} 1 & r_3 \\ 0 & 1 \end{bmatrix}
\] to (a_3, b_3, c_3), we get $(a_3, b_3 + 2a_3 r_3, a_3 r_3^2 + b_3 r_3 + c_3)$. Thus we want to find k and r_3 such that $B_0 + 2a_1 a_2 \ast k = b_3 + 2a_3 r_3$. Rearranging, we get $(B_0 - b_3)/2 = a_3 r_3 - a_1 a_2 \ast k$. Since a_1, a_2, a_3 are pairwise relatively prime, then $a_1 a_2$ is relatively prime to a_3. Thus we can apply Bezout’s theorem again, to see that a solution for k, r_3 must exist.

Now, we must verify whether the third terms of each BQF are divisible by the first term of the other two BQF. We know that since the discriminant of all the binary quadratic equations are equal and using the fact that the middle term is the same for all BQF, then $4 \ast (a_1) \ast (a_1 r_1^2 + b_1 r_1 + c_1) = 4 \ast (a_2) \ast (a_2 r_2^2 + b_2 r_2 + c_2) = 4 \ast (a_3) \ast (a_3 r_3^2 + b_3 r_3 + c_3)$. Since a_1, a_2, a_3 are pairwise relatively prime, then this means that $a_1 r_1^2 + b_1 r_1 + c_1$ is divisible by a_2 and $a_3, a_2 r_2^2 + b_2 r_2 + c_2$ is divisible by a_1 and a_3, and $a_3 r_3^2 + b_3 r_3 + c_3$ is divisible by a_1 and a_2. Thus we can divide each term by $4a_1 a_2 a_3$ to receive:

\[
\frac{a_1 r_1^2 + b_1 r_1 + c_1}{(a_2 a_3)} = \frac{(a_2 r_2^2 + b_2 r_2 + c_2)}{(a_1 a_3)} = \frac{(a_3 r_3^2 + b_3 r_3 + c_3)}{(a_1 a_2)} = C
\]

Thus the forms would be $(a_1, B, a_2 a_3 C), (a_2, B, a_1 a_3 C), (a_3, B, a_1 a_2 C)$.

\[
\square
\]

Lemma 2. $(f_1 \circ f_2) \circ f_3 \sim f_1 \circ (f_2 \circ f_3)$

Proof. Using Lemma 1, we know that we can find equivalent forms:

$(a_1, B, a_2 a_3 C), (a_2, B, a_1 a_3 C), (a_3, B, a_1 a_2 C)$ such that: $(a_1, B, a_2 a_3 C) \sim f_1, (a_2, B, a_1 a_3 C) \sim f_2, (a_3, B, a_1 a_2 C) \sim f_3$. Then applying the law of compositions directly, we have that:

$(f_1 \circ f_2) \circ f_3 = ((a_1, B, a_2 a_3 C) \circ (a_2, B, a_1 a_3 C)) \circ (a_3, B, a_1 a_2 C) = (a_1 a_2, B, a_3 C) \circ (a_3, B, a_1 a_2 C) = (a_1 a_2 a_3, B, C)$

Meanwhile, we also have:

$f_1 \circ (f_2 \circ f_3) = (a_1, B, a_2 a_3 C) \circ ((a_2, B, a_1 a_3 C) \circ (a_3, B, a_1 a_2 C)) = (a_1, B, a_2 a_3 C) \circ (a_2 a_3, B, a_1 C) = (a_1 a_2 a_3, B, C)$

\[
\square
\]