The action of $\text{SL}_2(\mathbb{Z})$ on the upper half plane

Danielle Wang

October 11, 2017

1 Basic definitions

Definition 1.1. The complex upper half plane \mathbb{H} is the subset of the complex plane given by

$$\mathbb{H} := \{ z = x + yi \in \mathbb{C} | y > 0 \}.$$

Definition 1.2. $\text{SL}_2(\mathbb{Z})$ is defined to be the set of 2×2 matrices with integer entries and determinant 1, i.e. it consists of matrices of the form

$$\text{SL}_2(\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}, \ ad - bc = 1 \right\}.$$

2 The action of $\text{SL}_2(\mathbb{Z})$ on \mathbb{H}

Definition 2.1. For any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$ and $z \in \mathbb{H}$, we define

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z := \frac{az + b}{cz + d}.$$

This is called the action of $\text{SL}_2(\mathbb{Z})$ on \mathbb{H}.

Example 2.2. The matrix $S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ acts on z by

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} z = \frac{1 \cdot z + 1}{0 \cdot z + 1} = \frac{z + 1}{1}.$$

The matrix \(T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) acts on \(z \) by

\[
\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} z = \begin{pmatrix} 0 \cdot z + 1 \\ -1 \cdot z + 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -z \end{pmatrix}.
\]

One can show that this action sends \(\mathbb{H} \) to itself, and that it commutes with matrix multiplication (so if you multiply two matrices and apply it to \(z \), you get the same answer as if you apply one matrix at a time).

Proposition 2.3.

(i) If \(\tau \in SL_2(\mathbb{Z}) \) and \(z \in \mathbb{H} \), then \(\tau z \in \mathbb{H} \).

(ii) If \(\tau_1, \tau_2 \in SL_2(\mathbb{Z}) \), and \(z \in \mathbb{H} \), then \((\tau_1 \tau_2)z = \tau_1(\tau_2 z) \).

Proof.

(i) Let \(z = x + y i \) with \(y > 0 \). Then

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{ax + ayi + b}{cx + cyi + d} = \frac{((ax + b) + ayi)((cx + d) - cyi)}{((cx + d) + cyi)((cx + d) - cyi)} = \frac{\text{real stuff} + \frac{ay(cx + d) - cy(ax + b)}{(cx + d)^2 + (cy)^2}i}{(cx + d)^2 + (cy)^2},
\]

Since sums of squares are positive, the imaginary part of this is still positive.

(ii) Let \(\tau_i = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} \) for \(i = 1, 2 \). Then,

\[\tau_2 z = \frac{a_2 z + b_2}{c_2 z + d_2}, \]

so

\[
\tau_1(\tau_2 z) = \frac{a_1 \cdot \frac{a_2 z + b_2}{c_2 z + d_2} + b_1}{c_1 \cdot \frac{a_2 z + b_2}{c_2 z + d_2} + d_1} = \frac{a_1 a_2 z + a_1b_2 + b_1c_2 z + b_1d_2}{c_1a_2 z + c_1b_2 + d_1c_2 z + d_1d_2} = (\tau_1 \tau_2)z.
\]

It’s easy to see that these are the coefficients of the product matrix. \(\square \)
3 The fundamental domain

A fundamental domain for the action of $\text{SL}_2(\mathbb{Z})$ on \mathbb{H} is a subset $F \subseteq \mathbb{H}$ such that for any point $z \in \mathbb{H}$ there exists some $\tau \in \text{SL}_2(\mathbb{Z})$ such that $\tau z \in F$, and no two points in F can be mapped to each other.

We want to find a fundamental domain for our action. Let

$$F := \left\{ |z| > 1, -\frac{1}{2} < \text{Re}(z) < \frac{1}{2} \right\} \cup \left\{ |z| \geq 1, \text{Re}(z) = -\frac{1}{2} \right\} \cup \{ |z| = 1, \text{Re}(z) \leq 0 \}.$$

Theorem 3.1. The set F defined above is a fundamental domain for the action of $\text{SL}_2(\mathbb{Z})$ on \mathbb{H}.

Proof. We’ll show that every point can be mapped to an element of F. We won’t prove the uniqueness part.

Let $z \in \mathbb{H}$. We want to move it into F.

1. Pick τ so that τz maximizes the imaginary part of τz. Why does this exist? We calculated above that for $z = x + yi$,

$$\text{Im} \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} z \right) = \frac{y}{(cx + d)^2 + (cy)^2}.$$

For any k, there are finitely many (c, d) such that $(cx + d)^2 + (cy)^2 \leq k$, so $\text{Im}(\tau z)$ achieves a maximum.

2. Recall that the matrix S in Example 2.2 shifts z by $+1$, so its inverse shifts by -1. By repeatedly applying S or S^{-1}, we can move τz into the strip

$$\{-1/2 \leq \text{Re}(x) < 1/2\}.$$

Say it’s been moved to z'. Note that z' has the same imaginary part as τz. We claim that $|z'| \geq 1$. Recall that the matrix T sends $z \mapsto -1/z$. Thus, if $|z'| < 1$, then

$$\text{Im} \left(-\frac{1}{z'} \right) = -\text{Im} \left(\frac{z'}{z'^2} \right) = \frac{\text{Im}(z')}{|z'|^2} > \text{Im}(z') = \text{Im}(\tau z)$$

contradicting the maximality of the imaginary part of τz.

\square