lecture 12.

Hydrogen atom.

The representation theory of $SU(2,0)$ is relevant to quantum mechanics of the hydrogen atom. Recall that the main equation of QM is the Schrödinger equation

$$-\frac{i}{\hbar} \frac{\partial \psi}{\partial t} = H \psi$$

where H is the Hamiltonian (suppressing the Planck constant).

So $\psi(x,t) = e^{iHt} \psi(x,0)$.

The Hamiltonian H has the form

$$H = -\frac{1}{2} \Delta + U(x) \quad \Delta = \text{Laplace operator.}$$

Where $U(x)$ is the potential.

For the hydrogen atom $U(x) = -\frac{1}{r}$ (again ignoring the units). Writing $r = |x|$, we get

$$H = -\frac{1}{2} \Delta - \frac{1}{r}.$$
The solution ψ has the form
\[\sum_{n} c_{n} e^{i E_{n} t} \psi_{n}(x), \] where
\[H \psi_{n} = E_{n} \psi_{n}. \]
The solutions of the stationary Schrödinger equation $H \psi = E \psi$ can be obtained by passing to spherical coordinates. Namely, write
\[R^{3} \rightarrow R + \mathbb{S}^{2}, \]
\[x \rightarrow (r, \mathbf{u}). \]
Then $\Delta = \Delta_{r} + \frac{1}{r^{2}} \Delta_{u}$, where
\[\Delta_{r} = \frac{1}{2r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right). \]
So we get
\[\frac{1}{2} \frac{\partial^{2} \psi}{\partial r^{2}} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r} \psi + \frac{1}{2r^{2}} \Delta_{u} \psi = -E \psi. \]
This can be solved by separation of variables. Namely, if $\xi(x)$ satisfies $\Delta_{u} \xi = \lambda \xi$, then
we have a solution
\[\psi = f(r) \frac{\hat{r}}{r} \] where \(f \) satisfies
\[f'' + \frac{2}{r} f' + \frac{2}{r^2} f + \left(\frac{\lambda}{r^2} + 2E \right) f = 0. \]
So it remains to solve the equation \(\Delta \xi = \lambda \xi \) (and find the possible \(\lambda \)). Since the operator \(\Delta \) is invariant under rotations, it acts by a scalar on every irrep. Also we have
\[S^2 = SU(2) \Big/ U(1), \] so \(L^2(S^2) = \bigoplus_{m=0}^{\infty} V_m \otimes V_m^* \), where \(V_m^* \) is the 0 weight space.
Thus \(L^2(S^2) = \bigoplus_{k=0}^{\infty} V_{2k} \).

The zero weight vectors are polynomials of the function of the angle \(0 \leq \phi \leq \pi \) (latitude), or of \(\cos \phi \). Moreover, they are polynomials.
of degree k. Also, orthogonality implies that these polynomials are orthogonal on $[-1, 1]$ under the uniform measure. These are nothing but Legendre polynomials $P_n(x)$.

\[\int_{-1}^{1} P_n(x) P_m(x) \, dx = \delta_{nm}. \]

Also, $\Delta u = \frac{1}{\sin^2 \phi} \frac{\partial^2}{\partial \theta^2} + \frac{1}{\sin \phi} \frac{\partial}{\partial \phi} (\sin \phi \frac{\partial}{\partial \phi})$.

So if no dependence of θ, we have $\frac{1}{\sin \phi} \frac{\partial}{\partial \phi} (\sin \phi \frac{\partial}{\partial \phi}) = \frac{1}{\sin \phi} \frac{\partial}{\partial z} \left((1 - z^2) \frac{\partial}{\partial z} \right)$.

So if P is of degree k and

\[\frac{\partial}{\partial z} (1-z^2) \frac{\partial P}{\partial z} = \lambda P \]

then

\[\lambda = -k(k+1) \]