Advanced Complexity

Jonathan Kelner
3/10/2011

Public vs. Private Coins

- Last time, showed how to convert any 2 round private coin protocol into a public coin one
 - People seemed a bit unsure about end of it, so I’d like to briefly review it and clarify things

- Basic idea:
 - Prover wants to convince the verifier (using public coins) that the private coin protocol would have accepted w.h.p.
 - If have a set \(S \) that verifier can check membership in, can use hashing and sampling to prove large
 - This is enough for GNI
 - For general case, not clear how to answer whether prover would have convinced to accept for given private coins
 - Prover could lie about what he would have done, since now knows the coins
 - Instead, make him say how he’d answer a specific question from verifier, and then make him show that this would correctly answer a lot of questions
 - Prover can do this for a lot of questions
 - See next slide for picture

\[
\begin{align*}
P: & \text{"There are } \geq 2^m \text{ questions where Accept has } \geq 2^m \text{ strings"} \\
V: & \text{Checks } 2^m \times m^2 \text{ enough. Sends:} \\
& h_i(\text{Questions}) \rightarrow \{0,1\}^{m^2}, \\
& t_i \in \{0,1\}^{m^1}
\end{align*}
\]

- P: Sends:
 - q s.t. \(h_i(q) = t_i \) and his answer to q
- V: Sends
 - \(h_j(\text{rand. bits}) \rightarrow \{0,1\}^{m^2} \)
 - \(t_j \in \{0,1\}^{m^2} \)
- P: Sends r s.t. \(h_j(r) = t_j \)
- V: checks r from same question q and would accept with given answer

- Prove #SAT \(\in \text{IP} \) in 18.404, but I’m going to review it
- Will try to relate it to some of the things we’ve done in this class

IP = PSPACE

- Note that IP not like alternation
 - Only \(\sum \), no \(\Pi \)s (i.e., no \(\forall \) quantifiers)
 - How would you prove formula unsatisfiable?
- Exact vs. approximate counting
- Surprisingly, can actually do exact counting in IP
 - \(\#P \subseteq \text{IP} \)
- In fact, can do anything in \(\text{PSPACE}! \)
 - This was very surprising when it came out
- Not hard to show \(\text{IP} \subseteq \text{PSPACE} \), so gives IP=PSPACE
- Proof rests on self reducibility
 - Basic point is can do anything self reducible in IP
- You showed #SAT \(\in \text{IP} \) in 18.404, but I’m going to review it
- Will try to relate it to some of the things we’ve done in this class
• Say have SAT formula \(\phi \), \(n \) vars, \(|\phi| = m \)
• \(P \) claims has \(N \) satisfying assignments
 - Good example to keep in mind: \(N = 0 \)
• \(V \) will ask questions like “how many satisfying assignments start with 01100”
 - Let \(f(a_{i-1}, a_0) \# \) SAT assign that start \(a_{i-1} \)
 - Self-reducibility: \(f(a_{i-1}, a_0) \# f(r_{i-1}, a_0) + f_1(a_{i-1}, a_0) \)
 - So if asked for \(f(a_{i-0}, a_0) \), \(f_1(a_{i-0}, a, 0), f_1(a_{i-0}, a, 1), \) could check if consistent
• If \(f_i \) is wrong, at least one of the \(f_{i+1}'s \) is wrong too
• So self-reducibility lets us verify recursively
• Of course, not efficient enough
 - **Usual explanation**: to verify, need to check whole tree, which is way too many verifications
• Alternative view:
 - **Randomized reduction**: To verify \(f(a_{i-1}, a_0) \), ask for \(f_{i-1}(a_{i-1}, a_0) \) and \(f_1(a_{i-1}, a_0, 0) \) randomly verify **one of them**
 - Now not too many calls, problem is just that error prob. is too high
 - Just need to find a way to improve probabilities
 - Do this with arithmetization
• This view is quite useful in other instances, will see others

Arithmetization

• Make multivariate polynomial \(p \) over finite field \(F \) s.t. \(p(a_1, ..., a_n) \)
 - agrees with \(\phi \) when all \(a_i \in \{0, 1\} \)
 - Don’t restrict \(p \) when \(a_i \) not all in \((0,1) \)
 - Field \(F \) chosen to be large: \(|F| > 2^m \)
 - Can construct & do arithmetic over \(F \) in poly time
 - **Key point**: polys of reasonable degree that are different are different at a lot of points (1-degree/2^n fraction)
• Turn logic into arithmetic:
 - \(f \land g \to fg \)
 - \(f \lor g \to 1-(1-f)(1-g) \)
 - **Note**: not \(f \lor g \)
 - \(\neg f \to 1-f \)
• SAT formula \(\phi \) becomes poly \(p \) of degree \(\leq m \)
 - **Redefine** \(f \) using \(p \) to be poly that agrees with previous definition on \(\{0,1\}^n \): \(f(a_1, ..., a_n) = \sum_{a_{n-1}, ..., a_0 \in \{0,1\}} p(a_1, ..., a_n) \)
• Still have \(f(a_{i-1}, a_0) = f_1(a_{i-1}, a_0, 0) + f_1(a_{i-1}, a, 1) \)
• But now can check at many points, and, if wrong, polys diff at most of them

Generalizing to PSPACE

• What did we use?
 - each poly to have bounded degree
 - each poly to have bound \(\# \) vars
 - to be able to compute \(f_i \) in poly time
 - to be able to compute \(f \) in terms of a small \# of values of \(f_i \)
• Can almost get these for TQBF
 - \(\exists \) is just an \(\land \), \(\forall \) is just an \(\lor \)
• **Problem**: degree blows up
• See board.
 - Add “linearization” quantifiers \(L_i \) as on board, get formula like
 - \(\forall x_1, l_1 \forall x_2, l_2 \exists x_3, l_3 \exists x_4, l_4 \exists l_5 \ldots p(x_1, x_2, x_3, x_4, x_5, \ldots) \)
 - where \(p \) is arithmetization of \(\phi \)
• Total \# quantifiers (\(\forall, \exists \), or \(L_i \)) is \(O(m^2) \)
IP Protocol for PSPACE

- **Phase 0:** \([f_0(j)]\)
 - P sends \(f_0(j)\)
 - V checks if \(f_0(j)=1\) (so that P claims TQBF is true)

 ...

- **Phase \(k\):** (reduce verifying \(f_{k-1}(r_1,\ldots)\) to verifying \(f_k(r_1,\ldots)\))
 - P sends coefficients of \(f_k(r_1,\ldots)\) as poly in \(z\)
 - V checks that deg right & vals consistent:
 - If P quantifier is \(\forall\): check \(f_k(r_1,\ldots) = f_{k-1}(r_1,\ldots,0)*f_{k-1}(r_1,\ldots,1)\)
 - If P quantifier is \(\exists\): check \(f_k(r_1,\ldots) = 1-((1-f_{k-1}(r_1,\ldots,0))*(1-f_{k-1}(r_1,\ldots,1)))\)
 - If P quantifier is \(L_i\): check \(f_k(r_1,\ldots,1) = (1-r)*f_{k-1}(r_1,\ldots,0) + r*f_{k-1}(r_1,\ldots,1)\)

 Note: V and \(\exists\) change #vars, but \(L_i\) doesn't, so # vars = \(i\), # rounds: some \(N > n\)

Picks random \(r_2 \in F\) and sends to P. (If at an \(L_i\), replace old \(r\) with new one)

...

- **Final phase:** [check \(f_n(r_1,\ldots,r_n)\)]
 - V checks directly that \(f_n(r_1,\ldots,r_n) = p(r_1,\ldots,r_n)\).

 Note: final round, just had to verify \(p\), which was arithmetization of original formula, so we can do this without help from prover

- Earlier rounds: only sent coefficients of 1-variable polynomials, so didn't ever have to send too much information