Derandomization, part 4

Jonathan Kelner
4/7/2011

$$G_r(\sigma) = L(\sigma|S_1)L(\sigma|S_2)\ldots L(\sigma|S_r)$$

- **Claim:** If $H_1(m) \geq r/\epsilon$ and $\epsilon \leq 1/r$, gives an ϵ-PRG for circuits of size r

 - **Proof:**
 - Suppose for sake of contradiction that have circuit C of size r s.t.
 $$\left| \Pr_{\sigma \in (0,1)^{r \cdot (m)}} [C(G_r(\sigma)) = 1] - \Pr_{\rho \in (0,1)^{r \cdot (m)}} [C(\rho) = 1] \right| \geq \epsilon$$
 - By indistinguishability vs. predictability result, enough to show
 $$\Pr[G_r(\sigma_1),\ldots,G_r(\sigma_{r-1}) = G_r(\sigma_r)] \geq \frac{1}{2} + \frac{\epsilon}{r}$$
 - Let $y_i = G_r(\sigma)_i = L(\sigma|S_i)$ for all i, and let $x = \sigma|S_i$, $q = \sigma|S_i^c$.
 - Can predict $y_i = L(x)$ from y_{i-1},\ldots,y_{i-1}. Get contradiction if can predict it from x.
 - By averaging argument, can set q to fixed value s.t. prob over vals of x s.t.
 $$|S_i \cap S_i^c| = \log r$$
 - y_i only depends on $|S_i \cap S_i^c| = \log r$ bits of x, so can compute with circuit of size r.
 - Get total circuit of size $\leq r^2 \leq \epsilon r$, computing $L(x)$ with prob $\geq 1/2 + \epsilon/2r$, which gives contradiction.

Last Time

- **Definition:** Average-case hardness $H_1(m)$ of lang L on inputs of length m is largest s s.t. no circuit of size $\leq s$ can match L on at least $1/2 + 1/s$ fraction of inputs of length m
- **Definition:** Let $\ell > m > d$. A family of subsets $S_1,\ldots,S_r \subseteq \{1,\ldots,\ell\}$ is a (ℓ,m,d)-design of size r if $|S_j| = m$ for every j and $|S_j \cap S_k| \leq d$ for every $j \neq k$.
- For given r,m, let $d(m) = O(m^2)$. We showed we can get a $(\ell,m,\log r)$-design S_1,\ldots,S_r.
- Nisan-Wigderson PRG G_r will be given by
 $$G_r(\sigma) = L(\sigma|S_1)L(\sigma|S_2)\ldots L(\sigma|S_r)$$
- **Claim:** If $H_1(m) \geq r/\epsilon$ and $\epsilon \leq 1/r$, this is an ϵ-PRG for circuits of size r.

Design Parameters and Resulting Derandomizations

- Need r sets (\approx random bits used by algorithm)
 - Can be as big as running time of machine-poly(n)
- Random seed is of size ℓ-size of union of all the S_i (i.e., universe they live in)
- Simulation tries all random seeds, runs poly time algorithm for each
 - So running time grows like poly(n)*2^ℓ.
- Need intersections to be of size $O(\log(n))\cdot\Omega(\log(r))$
- We gave construction with:
 - Number of sets $\approx r$
 - Size of sets m has to be $\geq r\log(r)$.
 - Intersections of size $O(\log(r))$ (think of as being at most small const * m).
 - Random seed of size $\ell \cdot r \cdot (\log(n))$.
 - So running time $= \text{poly}(n)^*2^{\text{poly}(\log(\log(n)))}$
 - So running time grows like poly(n)*$2^{\text{poly}(\log(\log(n)))}$.
- Basic reason for not getting polynomial running time:
 - Number of sets exp in square root of seed size, so need seed to be $\Omega(\log(n))$, not $O(\log(n))$
 - When set size $= O(\log(n))$, can give a better construction where number of sets is exponential in seed size ℓ
 - Just greedily choose the sets, give counting argument
 - Everything is of size $\log(n)$, so can do brute force alg in poly time
 - See original paper (posted on course website).
- Let's seed be of size $O(\log(n))$, gives running time of poly(n)

4/12/11
Derandomizing Space-Bounded Computation

- Will look at small space bounds (e.g., log), where need to be a little careful with defs
 - **Time bounds**: will require randomized computations to terminate in time exponential in space bound
 - **Access to random tape**: rand tape unidirectional
 - Can fix input x, think of distinguisher only as function of random bits
- Will see if we can make PRGs against these
 - Will not require unproven complexity assumptions

Reduction to Automata

- Will do something stronger: fool poly-sized automata
- Definition: (m,k)-automaton Q is finite state machine with:
 - States $1,\ldots,m$
 - 2^k transitions per state, correspond to strings in $\{0,1\}^k$
 - Will identify with its transition function
 - $Q(i;x)=j$ means goes from i to j when fed input x
- Given $\text{BSPACE}(S)$ machine with n rand bits, get (m,k)-automaton with $m=2^{O(S)}$, $k=O(S)$
- Get random bits in blocks of size k
- Assume WLOG that n=power of 2, unique, absorbing accept state
- Want $G:\{0,1\}^\ell \to \{0,1\}^n$ that fools these
 - Will find one with $\ell=O(S \log n)=O(\log m \log n)$
 - If start with log space, will use $O(\log^2)$ input bits
- What will this show?