Amplification of Hardness

Jonathan Kelner

4/28/2011

Application to Hardness Amplification

- Will almost give us what we need for worst-case to average-case hardness reduction
 - Idea:
 - Think of $f: \{0,1\}^n \rightarrow \{0,1\}$ as binary string of length $N = 2^n$
 - Encode to f' in $\{0,1\}^M$ using ECC: $\{0,1\}^M \rightarrow \{0,1\}^M$, say of distance 0.2
 - Think of f' as function from $\{0,1\}^{\log M} \rightarrow \{0,1\}$
 - If have corrupted f' with 10% of values changed, can still recover f' if can compute f' correctly with prob. 0.9, can compute f exactly
 - i.e., if f hard in worst case, f' hard in average case
 - Problem:
 - Need reduction to be efficient, convert small circuits to small circuits
 - Can’t read whole function and decode everything—way too big
 - For poly sized circuits, need to run in poly(n)=polylog(N)
 - So can only read a few values
 - Solution: Locally decodable codes

Locally Decodable Codes

- **Definition:** Local decoder for ECC $E: \{0,1\}^n \rightarrow \{0,1\}^m$ handling ρ errors is alg that:
 - Given query access to y that is within distance ρ of codeword $E(x)$
 - Can recover jth bit of x in $\text{polylog}(m)$ time with prob $\geq 2/3$
 - Also useful in practical settings
 - Can get local decoders for R-S, W-H, R-M, and concatenated codes
- **Claim:** Suppose have function $f \in E$ with worst-case hardness $\geq S(n)$. Then exists $g \in E$ and const. $c>0$ s.t. with $H_{\text{avg}}^{0.99}(g) \geq S(n/c)/n^c$ for sufficiently large n

Stronger Hardness

- For derandomization of BPP, need hard to compute with prob only slightly bigger than 1/2, so need stronger result
 - **Fundamental problem:**
 - Suppose want hard to compute with prob., say, 0.6
 - Binary ECC cannot have distance $>1/2$
 - So cannot correct if errors in more than 1/4 of bits
 - Means can’t recover if <0.75 fraction of bits are right
 - **Solution:** List decoding
 - Don’t try to uniquely decode
 - Try to get reasonably small list of possibilities
List Decoding

- **Theorem (Johnson Bound):** Let $E: \{0,1\}^n \rightarrow \{0,1\}^m$ have dist $\geq 1/2 - \epsilon$. For every $x \in \{0,1\}^m$ and $\delta \geq \epsilon^{1/2}$, exists $\leq 1/(2\delta^2)$ vectors within distance $\frac{1}{2} - \delta$
- Proof idea is similar to $1/2$ bound for unique decoding
- There are local list decoding algorithms for the codes we’ve discussed (with somewhat worse parameters)
- How do we use this?
 - Need to handle list of values instead of just one

Introduction to PCPs

- Not all NP-complete optimization problems are created equal
 - Some can be approximated much better than others
 - PCPs are our best tool for proving problems hard to approximate
 - Will combine a bunch of the tools we’ve introduced
- Example question:
 - Given 3SAT formula, NP-complete to check if satisfiable
 - Let val(f)=max number clauses can be simultaneously satisfied
 - A ρ-approximation alg will output assignment satisfying ρ val(f) clauses
 - For what ρ do there exist ρ-approx alg for 3SAT?
 - Can get $1/2$ easily, $7/8$+ with a little more work
 - $7/8$ is easy for 3CNF
 - Can we significantly do better?
 - PCP Theorem says no, unless $P=NP$ (!!!)
 - Not known whether can get $1-\epsilon$ for every $\epsilon >0$ until 1992
 - We’ll show some constant, but a little worse than $7/8$
 - Will have two different viewpoints of PCP Theorem:
 - Assertion about certain proof systems
 - Hardness of approximation theorem

Putting the pieces together

- **Claim:** Suppose have function $f \in E$ with worst-case hardness $\geq S(n)$.
 Then exists $g \in E$ and const. $c>0$ s.t. with $H_{\text{avg}}(g) \geq S(n/c)^{1/2}$ for all sufficiently large n
 - I.e., can’t use circuits of size $S(n/c)$ to get right with prob better than $\frac{3}{4} + 1/S(n/c)$
- **Proof sketch:**
 - Think of as f as $N=2^n$ bit string, encode with ECC
 - Goal will be to use $S(n)$ alg computing g on $\frac{1}{2} + 1/S(n)$ fraction of $(0,1)^n$ to compute f perfectly on $(0,1)^n$
 - Use concatenation of $R \cdot M$ with $W \cdot H$, get g of length N'
 - Think of as function from $(0,1)^n \rightarrow (0,1)$, $n'=log N'$
 - Will have parameters s.t. $n' = O(n)$
 - Take $|F|=S(n)$, δ=small constant, $d_1=|F|^{1/2}$
 - Need to encode f as input to $R \cdot M$ code, $\ell=2 \log N \log d$ suffices
 - Get $|F|$ elements of f, apply $W \cdot H$ to each $\rightarrow |F|^{\ell}$ total bits
 - List decoders take time poly$(|F|, d, \delta=S(n)^{1/2}, c=$absolute const.
 - Will handle $\frac{1}{2}$-approx of size $S(n)^{1/2}$ fraction errors with list size $|F|^{1/26} \cdot n^{O(1)}$
 - Will have parameters s.t. $n' = O(n)$
 - Set δ small enough (as fn of ϵ), hardwire index of f inside list
 - Need $O(\log(n))$ bits to index f

Proof System Viewpoint

- NP = things with poly time verifiable proofs
 - I.e., exists poly-sized certificates, poly time deterministic verifier
- Suppose too lazy to read the whole proof
- **PCP Theorem will show:** can encode a proof s.t. you can verify it by just looking at a few bits (chosen using randomness), with poly increase in length
 - How can this possibly work?
 - Formally, have verifier V that runs in poly time s.t.:
 - Can query any bit by address (i.e., like RAM)
 - Will be allowed to flip coins
 - Queries will be nonadaptive, i.e., depend only on input and randomness, not on results of earlier queries
 - Let L has $(r(n), q(n))$-PCP verifier V if:
 - V uses $\leq r(n)$ random bits
 - V makes $\leq q(n)$ queries to proof
 - Proof is of length $\leq q(n)2^{O(1)}$
 - Completeness: If $x \in L$, exists proof s.t. accept with prob. 1
 - Soundness: If $x \notin L$, V does not accept any proof with prob $\geq 1/2$
- PCP$(r(n), q(n))$-languages with $(O(r(n)), O(q(n))$-verifiers
- **PCP Theorem:** NP = PCP$(\log n, 1)$
 - PCP$(\log n, 1) \subset NP$ is easy
Hardness of Approximation Viewpoint

- **PCP Theorem (version 2):** \(\exists \rho < 1 \) s.t., for every \(L \in \text{NP} \), exists poly \(f \) mapping strings to 3CNF formulas s.t.:
 - \(x \in L \Rightarrow \text{val}(f(x)) = 1 \)
 - \(x \notin L \Rightarrow \text{val}(f(x)) < \rho \)
- Implies that exists \(\rho < 1 \) s.t. MAX-3SAT hard to approximate within \(\rho \) unless \(P = \text{NP} \)
 - Why?
- Will be convenient to work with more general constraint satisfaction problems (CSPs)
 - qCSP problem will allow arbitrary constraints s.t. each depends on \(\leq q \) variables (call \(q \) the “arity”)
 - For collection of constraints \(\phi \), \(\text{val}(\phi) = \text{fraction of constraints that can be simultaneously satisfied} \)
- \(\rho \)-Gap-qCSP problem: distinguish \(\text{val}=1 \) from \(\text{val}<\rho \)
- **PCP Theorem (version 3):** \(\exists q \in \mathbb{N}, \rho \in (0,1) \) s.t. \(\rho \)-Gap-qCSP is \(\text{NP-hard} \)

Dictionary Between the Two Views

- **Proof View:**
 - PCP verifier (V)
 - PCP proof (\(\pi \))
 - Length of proof
 - # queries (q)
 - # random bits (r)
 - Soundness prob. (usually \(1/2 \))
- **Hardness View:**
 - CSP instance (\(\phi \))
 - Assignment to vars
 - # variables (n)
 - Arity of constraints (q)
 - \(\log(#\text{constraints}) \)
 - Max \(\text{val}(\phi) \) for NO instance