Probabilistically Checkable Proofs

Jonathan Kelner
5/5/2011

Dictionary Between the Two Views
- **Proof View:**
 - PCP verifier (V)
 - PCP proof (π)
 - Length of proof
 - # queries (q)
 - # random bits (r)
 - Soundness prob. (usually 1/2)

- **Hardness View:**
 - CSP instance (ϕ)
 - Assignment to vars
 - # variables (n)
 - Arity of constraints (q)
 - log(#constraints)
 - Max val(ϕ) for NO instance

- Given PCP, make CSP by making constraint for each possible set of bits queried
 - Constraint will be satisfied by vals verifier would accept
- Given CSP, make PCP by giving proof equal to variable assignments
 - Verifier will pick random constraint and check if corresponding variables from proof satisfy it

Last Time
- L has (r(n),q(n))-PCP verifier V if:
 - V uses ≤ r(n) random bits
 - V makes ≤ q(n) queries to proof
 - Proof is of length ≤ q(n)2ⁿʳ
 - Completeness: if x ∈ L, exists proof s.t. accept with prob. 1
 - Soundness: if x ∉ L, V does not accept any proof with prob > 1/2
- PCP(r(n),q(n))=languages with (O(r(n)),O(q(n))-verifiers
- qCSP: arbitrary collection of constraints ϕ s.t. each depends on ≤ q variables (call q the “arity”)
 - val(ϕ)=fraction of constraints that can be simultaneously satisfied
- ρ-Gap-qCSP problem: distinguish val=1 from val<ρ
- PCP Theorem has a few equivalent statements:
 - NP = PCP(log n, 1)
 - ∃ q∈ N, ρ∈ [0,1) s.t. ρ-Gap-qCSP is NP-hard
 - ∃ ρ<1 s.t., for every L ∈ NP, exists poly f mapping strings to 3CNF formulas s.t.:
 - x ∈ L =⇒ val(f(x))=1
 - x ∉ L =⇒ val(f(x))< ρ

Warmup: NP ⊆ PCP(poly(n),1)
- Will sketch this result using proof viewpoint
 - Will be used in proof of full theorem too
- Need exponential-sized proof, O(1) queries
- Enough give PCP for one NP-complete language
 - Will use L={satisfiable systems of quadratic eqs over GF(2)}
 - E.g. lists of equations like u₁u₂ + u₁u₄ + u₁u₅ = 1
 - Can assume no linear terms, since uᵢ² = uᵢ
 - Let U=n²-sized vector (uᵢ uᵢ)ᵢ,j
 - Can find A, b s.t. satisfying your system of eqs means finding U s.t.:
 - AU=b
 - U=(uᵢ uᵢ)ᵢ,j for some vector u
 - (If m=#constraints, A is m x n², b is n x 1)
If valid proof, will pass all tests.

Given proof, verifier will:

- Proof will consist of f and g, s.t.: f = Walsh-Hadamard encoding of u
g = Walsh-Hadamard encoding of u ⊕ u
- Can think of them as fn s., f : {0,1}^n → {0,1}, g : {0,1}^n → {0,1}
- Valid codewords in W-H iff linear
- Know can locally decode
- Can also locally verify: distinguish valid codewords from things at least 0.001 away from any codeword
- Total proof size is 2^n + 2^n
- Given proof, verifier will:
 - Verify f, g are (close to) linear
 - Use local verifier. Then locally decode, so can assume actually linear.
 - Verify that g r u ⊕ u, where u is string encoded by f
 - Choose random r, r' ∈ {0,1}^n, check if f(r) ⊕ f(r') ⊕ g(r ⊕ r')
 - Check that g encodes satisfying assignment
 - Need to satisfy all equations, but can’t check them all, and not okay to sample
 - Instead, add up a random subset of equations, take mod 2
- If valid proof, will pass all tests. If unsatisfiable, will fail with constant prob.

How We’ll Prove Stronger Theorem

- Take CSP view, show how to amplify gaps
- Main Theorem: ∃ constants q_o ≥ 3, ε_o > 0 s.t., for any ε << ε_o, can
 - Start with q_o CSP φ over alphabet {0,1}
 - Get new q_o CSP ψ over alphabet {0,1} with val(ψ) ≤ 1-2ε
 - New formula ψ only bigger by factor of C=C(q_o)
 - If val(φ)=1 then val(ψ)=1
 - If val(φ) ≤ 1-ε then val(ψ) ≤ 1-2ε
 - Implies PCP Theorem (CSP version):
 - Start with CSP φ with m constraints
 - Apply theorem log(m) times, get new CSP ψ
 - If φ satisfiable, so is ψ
 - If φ unsatisfiable, val(φ) ≤ 1-1/m
 - So val(ψ) ≤ 1- min(2ε_o, 1-2log m/m)=1-2ε_o
 - Size of ψ = Clog m = poly(m)

What the Steps Will Do

- Preprocessing:
 - Given constraint graph G, make G’=prep(G)
 - For some constants 0<λ<δ, δ > 0, will have:
 - G’ is d-regular, has self loops at all vertices, λ(G’)=δ< λd
 - G’ has same alphabet as G, size(G’)=O(size(G))
 - δ_1, UNSAT(G) ≤ UNSAT(G) ≤ UNSAT(G’)
 - Amplification:
 - For constant t, get new constraint graph G” s.t.:
 - Same vertices
 - # edges multiplied by δ
 - Alphabet size |Σ|^d^2
 - UNSAT(G”) ≥ β_t · t^{1/2} · (UNSAT(G’))^{1/2}
 - β_t = const. depending only on λ, d, |Σ|
 - Alphabet Reduction:
 - Size increases by a constant factor
 - Alphabet reduced to a (fixed) constant
 - UNSAT only decreases by a constant factor

How We’ll Prove Main Theorem

- Will work with 2 variable constraints
 - Includes 3-coloring, so NP hard
- Make constraint graph G=(V,E) with vertices = vars, edges = constraints
- Assignment σ : V → Σ
- UNSAT(σ)=fraction of unsatisfied constraints
- Size(G)=|V|+|E|
- Everything we do will preserve satisfiability
- Will apply 3 kinds of steps:
 - Preprocessing (make G nice)
 - Amplification (make UNSAT larger, alphabet bigger)
 - Alphabet reduction (make alphabet =2, keep UNSAT almost the same)
Amplification

- Why can’t we just (in proof viewpoint) repeat verifier a bunch of times?
 - Increases arity, no longer a 2CSP
 - Allowed to increase alphabet, but not arity
 - Instead: graph powering
- Vertices of G' will be same as vertices of G
- # of (parallel) edges between u and v will = # of t-step walks from u to v in G
- $\sum \rightarrow \sum^{d^{t/2}}$
 - Each vertex v will have opinion of values of verts within distance $\lfloor d/2 \rfloor$. (Call this $I(v)$.)
- Constraint for edge (u,v) satisfied if can find an assignment to all (old) vars in $I(v)$ s.t.:
 - Agrees with opinions of both u and v
 - Satisfies all constraints in $E \cap I(u) \times I(v)$