End of SL vs. L and Amplification of Randomness

Jonathan Kelner
4/26/2011

Today

• Finish SL vs. L
• Talk about expander walks for error reduction

Last Time

• Wanted to show SL=L by giving deterministic algorithm for undirected s-t connectivity
• Defined derandomized squaring operation, which improves connectivity without increasing degree too much
• Logspace Algorithm for UPATH
 ◦ Preprocessing: Show WLOG graph is 4-regular, consistently labeled, and has self-loop at each vertex (so nonbipartite)
 ◦ Perform derandomized squaring $O(\log N)$ times using constant degree expanders
 ◦ Will increase spectral gap by a constant each step until get second eigenval to be constant
 ◦ Want eigenval to be $1/poly(n)$, to guarantee diameter 1
 ◦ If continue as above, can’t get past constant
 ◦ Will use really nonconstant degree graphs at end, but not too many times, so total deg stays poly
 ◦ See paper
• Have to show can simulate all of this in log space
• You can. See paper.

Derandomized Squaring

• Labeling: assign K distinct #s in $[K]$ to outedges of each vertex
• Say consistent if all edges into each vertex have distinct labels
• Let X be labeled K-regular graph with vertex set $[N]$
• Let G be labeled D-regular graph with vertex set $[K]$
• Define KD-outregular graph $X\circ G$ with:
 ◦ Vertex set $[N]$
 ◦ Edges are subset of paths in X of length 2
 ◦ Have edges $v[x][y]$ if y is neighbor of x in G
 ◦ I.e., Let $x\in[K]$ be an edge label in X,
 ◦ $a\in[D]$ be an edge label in G
 ◦ Make edges from v to $v[x][x[a]]$ for all x,a
• If X is consistently labeled, will be regular
• If X,G consistently labeled, will be consistently labeled
• Will show that if G is an expander, will improve connectivity almost as much as squaring, but only mult degree by a constant
• If G constant degree, can do $O(\log(N))$ times and still have $poly(N)$ degree
Main Technical Result
- If \(X \) is a consistently labeled \((N,K,\lambda)\)-graph, \(G \) is a \((K,D,\mu)\) graph, then
 \[X \ominus G \text{ is an } (N,KD,f(\lambda,\mu)) \text{ graph, with} \]
 \[f(\lambda, \mu) = 1 - (1 - \lambda^2) \cdot (1 - \mu) \]
- Note that:
 - \(f(\lambda, \mu) \leq \lambda + \mu \)
 - \(1 - (1 - \gamma) \cdot \frac{3}{2} \) when \(\gamma < 1/4 \)
 - When \(\mu \to 0 \) (\(G \) really good expander), \(f(\lambda, \mu) \to \lambda^2 \)
- Proof will use:
 - Lemma: Let \(A = \text{walk matrix of } (N,D,\lambda) \) graph, \(J_N = N \times N \) all-ones matrix. Then
 \[A = (1 - \lambda)J_N + \mu C, \quad ||C|| = \max_{v \in \mathbb{R}^n} \frac{||Cv||}{||v||} \]
 - Intuitively, means random step like going to unif. distr. with prob \((1 - \lambda)\), not getting further from unif with prob \(\lambda\)
 - Not exactly, b/c \(C \) not necessarily stochastic, but right idea
 - Proved last time
- See board for proof of main result from lemma

Error Reduction with Expander Walks
- Have previously seen a few ways to improve error probability of randomized algorithms
 - Repetition, pairwise independent repetition, deterministic error reduction
 - Say initial alg needs \(r \) random bits, want to reduce error from \(1/3 \) to \(2^{-t} \). Our techniques gave:

<table>
<thead>
<tr>
<th></th>
<th># Repetitions</th>
<th># Random bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetition</td>
<td>(O(t))</td>
<td>(O(tr))</td>
</tr>
<tr>
<td>Pairwise independent repetition</td>
<td>(O(2^t))</td>
<td>(O(t+r))</td>
</tr>
<tr>
<td>Deterministic error reduction</td>
<td>(O(2^t))</td>
<td>(r)</td>
</tr>
<tr>
<td>Today</td>
<td>(O(t))</td>
<td>(r+O(t))</td>
</tr>
</tbody>
</table>

Error Reduction with Expander Walks
- Will do for RP. BPP a little more work, same idea
- Implicitly construct constant degree expander \(G \) with \(N = 2^t \) vertices, spectral gap \(\epsilon \)
 - Verts. correspond to random bits for alg, in \(\{0,1\}^t \)
 - Choose a random vertex using \(r \) random bits
 - Take random walk of length \(k \) using \(O(k) \) random bits
 - Let verts be \(u_1, \ldots, u_t \)
 - Run alg with randomness corresponding to \(u_1, \ldots, u_t \)
 accept if ever accept
 - The fact that this gives error red follows from:
 - **Claim:** For \(G \) and \(u_i \) as above, let \(B \subseteq V \) be any set with \(|B| \leq (1 - \delta)n \). Then
 \[\Pr [u_i \in B \forall i \in \{1, \ldots, t\}] \leq \sqrt{1 - \delta} (1 - \epsilon \delta)^{\frac{t}{2}} \leq (1 - \epsilon \delta)^{\frac{t}{2}} \]
 - See board for proof