The cognitive basis for restrictions on vowel harmony

Sara Finley
finley@cogcsci.jhu.edu
William Badecker
Johns Hopkins University
Goal of This Talk:

Learning Involves:

• Abstract Phonological Representations
 – Features

• Constrained by universal grammatical principles
 – Reflected in typological frequency

• Artificial grammar learning experiments can tap into adult phonological representations
Traditional View of Features

- Abstract Learning: Features
- Abstract features traditionally assumed in theoretical phonology
 - SPE feature bundles
 - Autosegmental tree structures, etc.
 - Vowel harmony in SPE

\[V \Rightarrow [\alpha\text{Back}] \] / \[V \] [\alpha\text{Back}]
Challenges to Abstract Features

• **Exemplar-models** (Johnson 2006; Port & Leary 2006, etc)
• No need for abstract features
• Store
 – lexical items
 – fine-grained phonetic details
 – statistics
• Compute similarity
• Vowel harmony in exemplar models: statistics over co-occurrence
 – agreeing front vowels, high percentage [i e], [e i]
 – agreeing back, high percentage [u o] [o u], etc.
 – disagreeing vowels, low percentage, * [i u]
Finding Evidence for Features

• Artificial Grammar Learning: Poverty of the Stimulus (Wilson 2006)
 – Test generalization to novel segments/structures
 – Not testing for nativism

• Train Participants on Novel Mini language
 • Brief auditory exposure to language
 • Limited exposure to inventory of possible segments to undergo rule

• Test
 • Old Items (identical to training)
 • New Items (novel words, same segments as training)
 • New Segments (include ‘hold-out’ vowels)
 – generalization to novel segments = feature-based learning
Poverty of the Stimulus and Vowel Harmony (Wilson 2006)

• Vowel Harmony:
 – Process whereby vowels agree for some feature [Back], [Round], etc.
 – Induces morphophonological alternations
 • nek/nak (Hungarian)
 – Not in English (use monolingual English-speaking participants)
 – Learnable process (Pycha et al 2003, Wilson 2003 (nasal assimilation))
Poverty of the Stimulus and Vowel Harmony (Wilson 2006)

-Artificial Back Harmony:
 - 6 vowel inventory
 - Training Includes 4 vowels
 - Test Includes all 6 vowels

<table>
<thead>
<tr>
<th>Front</th>
<th>Back</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>u</td>
<td>Training/Test</td>
</tr>
<tr>
<td>e</td>
<td>o</td>
<td>TEST ONLY</td>
</tr>
<tr>
<td>æ</td>
<td>a</td>
<td>Training/Test</td>
</tr>
</tbody>
</table>
Experiment 1: Back Harmony

• Will adult learners of an artificial back harmony language generalize to novel segments?
• Is there a difference in generalization based on vowel height?
Experiment 1: Back Harmony

• Stems trigger alternation in suffix vowel
 – Stems: CVCV
 • consonants [p, t, k, b, d, g, m, n]
 • 6 Vowels Total:
 – front [i, e, æ]
 – back [u, o, a]
 – Suffix alternates between
 [-mi] (front)/ [-mu] (back)

• Front vowels trigger [-mi]
 – [bige] ⇒ [bigemi]

• Back vowels trigger [-mu]
 – [bugo] ⇒ [bugomu]
Experiment 1: Stimuli

• Naturally produced stimuli
 – Adult male
 • Native English Speaker
 – English Vowels
• Intensity Scaled to 70 db
• Stimuli rated by 1st author and 2 native English speakers
Experiment 1: Hold-Out Conditions

- 4 Vowels in training
- 2 Hold-Out Conditions
- Low Hold-Out: [i, e, u, o]
- Mid Hold-Out: [i, u, æ, a]
4 Learning Hypotheses

- Segment-Based Learning: Learners learn rule based on individual segments
 - no generalization to novel segments
- Formally Restricted Feature-Based Learning: Abstract learning but to the smallest possible natural class
 - generalization to mid but not low vowels
- General Feature-Based Learning: Learners learn a general, abstract rule
 - generalization to mid and low vowels
- Substantively Biased Feature-Based Learning: Abstract learning, constrained by universal grammatical tendencies
 - generalization to mid and low vowels
Predictions: Experiment 1

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Mid Vowel</th>
<th>Low Vowel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Formally-Restrictive</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>General</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Substantivity - Biased</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
Participants (all experiments)

- Adult native English speakers
- Johns Hopkins Undergraduate Students (for extra credit)
- 12 participants in each training condition
Experiment 1: Training

- 4 Vowels in training: 2 Hold-Out Conditions
 - Low Hold-Out: [i, e, u, o]
 - Mid Hold-Out: [i, u, æ, a]
- 24 items, each played 5 times
 - Stem followed by Stem + Suffix
 - bige, bigemi budo, budomu
- Controls
 - 48 stems, 24 harmonic stems, 24 disharmonic stems
Experiment 1: Test

- Forced choice
 - Heard 2 suffixed forms
 - Pick Form ‘Most likely to be in language’
 » bidimi bidimu

- 36 test items

- 3 test conditions:
 - Old Items (Identical to training)
 - New Items (Identical segments)
 - New Vowels (mid vowels/low vowels)
The Role of Generalization

- High Performance on Old Items:
 - form-by-form learning
- High Performance on New Items:
 - abstract rule
- High Performance on New Vowels:
 - feature-based rule
Experiment 1: Results

Figure 1: Proportion of Harmonic Responses for All Conditions

• Controls at chance
• Mid Hold-Out generalized to Mid vowels, but did numerically worse on new items (low vowels)
• Low Hold-Out generalized to new items, but not low vowels
Exp 1 Results Summary

• Generalization to Mid Vowels
 – Supports Feature-Based Accounts

• No Generalization to Low Vowels

• Round Confound
 – suffix [mi]/[mu] alternates in backness AND rounding
 – Low vowels unround
 • may have lead to poor generalization
 • Low Vowels do not participate in round harmony
 – supports substantive-biased hypothesis
Predictions: Experiment 1

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Mid Vowel</th>
<th>Low Vowel</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment</td>
<td>☹️</td>
<td>✓</td>
<td>☹️</td>
</tr>
<tr>
<td>Formally-Restrictive</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>General</td>
<td>✓</td>
<td>☹️</td>
<td>☹️</td>
</tr>
<tr>
<td>Substantively-Biased</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Experiment 2

• Are differences in generalization in Experiment 1 based on cross-linguistic tendencies or general dispreference for low vowels?

• Goals of Exp 2
 – Make front/back distinction unambiguous
 – Test Generalization for mid vs. high vowels
 – Test Perception of low vowels
Experiment 2: Low Vowel Suffix

• Front vowels trigger: [-mæk]
• Back Vowels Trigger: [-mak]
• Hold-Out Conditions:
 – Hold Out Mid Vowels
 • [i, æ], [u, a]
 – High Hold-Out
 • [e, æ], [o, a]
Exp 2: Substantively Biased

• If generalization based on typological frequencies
 – Generalization to Mid Vowels
 – Less robust generalization to High Vowels
 • particularly less generalization to High Front Vowels
 – Cross-linguistic tendency for non-participation of high front vowels (e.g., Finnish)
Predictions: Experiment 2

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Mid Vowel</th>
<th>High Vowel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Formally-Restrictive</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>General</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Substantively-Biased</td>
<td>√</td>
<td>√ /X</td>
</tr>
</tbody>
</table>
Experiment 2: Perception Task

- To test whether participants perceive the difference between front/back pairs, especially in the low vowels
- AXB paradigm
 - Participants asked to judge whether X is the same as A or B
 - teteto $X = A$
 - tetoto $X = B$
 - If difference is perceived, then performance should be very high, if no difference is perceived, performance should be low.
- Used as screening (all participants under 70% correct dropped; this occurred for less than 10% participants)
Experiment 2: Results

- Generalization in Both Training Conditions
 - more robust in Mid Hold-Out
Experiment 2: Results

• Generalization more robust to mid vowels than high vowels
 – greater generalization to back high vowels
 • 57% high front harmonic
 • 68% high back harmonic
 – Cross-linguistic tendency for non-participation of high front vowels (e.g., Finnish)

• Perception results at ceiling
Predictions: Experiments 1 & 2

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Exp 1</th>
<th>Mid Vowel</th>
<th>High Vowel</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>Formally-Restrictive</td>
<td>✓</td>
<td>✓</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>General</td>
<td>😞</td>
<td>✓</td>
<td>✓</td>
<td>😞</td>
</tr>
<tr>
<td>Substantively-Biased</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Experiment 3: Height Harmony

• When do learners postulate parasitic (restrictive) harmony rules?
 – Further distinguish between different feature-based approaches

• Substantively-Biased Hypothesis:
 – Parallels with Cross-linguistic Typologies

• Formally-Restrictive Hypothesis
 – Always form restricted, parasitic-type rule

• General Feature-Based Learning Hypothesis
 – Never form restrictive, parasitic rule
Experiment 3: Height Harmony

- Height Harmony
 - Parasitic on Tenseness
 - But not Backness
- Substantively Biased Hypothesis
 - Learners exposed to tense vowels undergoing vowel harmony will form parasitic rule
 - not generalize to lax vowels
 - Learners exposed to front vowels undergoing height harmony will form general rule
 - generalize to back vowels
Predictions: Experiment 3

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Lax Vowel</th>
<th>Back Vowel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Formally-Restrictive</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>General</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Substantively-Biased</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>
Experiment 3: Materials

- Suffix: [-mi], [-me]
- Three training conditions:
 - Control
 - Lax Hold-Out [i, u, e, o]
 - Back Hold-Out: [i, ɪ, e, ɛ]

[+HIGH] i u
 ɪ

[–HIGH] e o
 ε
Experiment 3: Results

- Learning in both Conditions
- Generalization to Back Vowels
- No Generalization to Lax Vowels
Predictions: Experiments 1-3

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Exp 1</th>
<th>Exp 2</th>
<th>Lax Vowel</th>
<th>Back Vowel</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment</td>
<td>😞</td>
<td>😞</td>
<td>✓</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>Formally-Restrictive</td>
<td>✓</td>
<td>😞</td>
<td>✓</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>General</td>
<td>😞</td>
<td>✓</td>
<td>😞</td>
<td>✓</td>
<td>😞</td>
</tr>
<tr>
<td>Subst-Biased</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
The Substantively-Biased Learner

• Generalization to Back but not Lax vowels
 Supports the Substantively-Biased Learning Hypothesis

• Substantively-Biased Learning:
 – abstract, feature-based representations
 – rules posited in line with typological frequencies
Experiment 4 Novel Suffixes

• Feature-based Generalization to novel vowels
 – How abstract is the rule formed?
 – Just memorized association to suffix?

• Can learners generalize to novel suffixes?
 – Evidence for more abstract rule
Experiment 4-Novel Suffixes

• Round Harmony Rule
• 4 vowel inventory [i, u, e, o] (all conditions)
• 3 conditions
 – Control
 – Generalize to Mid-Vowel Suffixes
 • train on high-vowel suffix
 – Generalize to High-Vowel Suffixes
 • train on mid vowel suffix
• CVCV stems
• High suffix
 • either [-mi]/[-mu], [-gi]/[-gu]
• Mid Suffix
 • Either [-me]/[-mo], [-ge]/[-go]
Experiment 4: Test

• 3 Conditions, 36 items
• Old
 • Stem and suffix exactly same as training
• New Stem
 • suffix identical to training
 • Novel Stem
• New Suffix
 • Stem identical to training
 • Novel suffix vowel
 • Different Consonant
 – if training suffix [-mi]/[-mu], novel suffix [-ge]/[-go]
Exp 4: Results

- All Groups Learned
- Generalization to Novel Suffixes
Exp 4: Summary

- Generalization to novel suffix vowel
- Both for Mid and High Vowels
- Supports feature-based learning
- Rule more abstract than memorized stem + Suffix association
Substantively-Biased Learning

- Abstract, feature-based representations
- Generalize to multiple alternations
- Rules posited in line with cross-linguistic typology
Alternative, Phonetic Interpretations

- Exemplar Learning: Match statistical co-occurrence of segments to exemplars heard in training
 - Exemplar-based version of the segment-based hypothesis
 - Learning outside training space (Marcus 1999) goes against it

- Acoustic Distance to Suffix: If new segments are too far from the suffix, won’t generalize
 - Exp. 3- Lax vowels closest to suffix vowels [i]/[e], but no generalization

- Acoustic Distance of Novel Segments: If novel segments are too close acoustically, won’t be able to match to suffix
 - Exp. 2: predicts best generalization to high vowels [i]/[u] since are furthest apart, but generalization here was less robust
Conclusions

• Abstract features used in learning
• Universal grammatical principles constrain learning
 – What are they, exactly?
• Artificial grammar experiments can be used to test phonological theories
 – More research, more refined paradigms, needed
THANK YOU!

• Acknowledgements:
 – Ari Goldberg, Becky Piorkowski, Paul Smolensky, Rebecca Morley, Colin Wilson, Luigi Burzio, Audience at the 2007 LSA Annual Meeting, and the JHU Psycholinguistics Lab