Lecture Notes on Skip Lists
Lecture 12 — October 26, 2005
Erik Demaine

- Balanced tree structures we know at this point: red-black trees, B-trees, treaps.
- Could you implement them right now? Probably, with time... but without looking up any details?
- Skip lists are a simple randomized structure you'll never forget.

Starting from scratch

- Initial goal: just searches — ignore updates (Insert/Delete) for now
- Simplest data structure: linked list
- Sorted linked list: $\Theta(n)$ time
- 2 sorted linked lists:
 - Each element can appear in 1 or both lists
 - How to speed up search?
 - **Idea**: Express and local subway lines
 - **Example**: 14, 23, 34, 42, 50, 59, 66, 72, 79, 86, 96, 103, 110, 116, 125
 (What is this sequence?)
 - Boxed values are “express” stops; others are normal stops
 - Can quickly jump from express stop to next express stop, or from any stop to next normal stop
 - Represented as two linked lists, one for express stops and one for all stops:

```
14 34 42 72 96
14 23 34 42 50 59 66 72 79 86 96 103 110 116 125
```

- Every element is in bottom linked list (L_2); some elements also in top linked list (L_1)
- Link equal elements between the two levels
- To search, first search in L_1 until about to go too far, then go down and search in L_2
Cost:

\[|L_1| + \frac{|L_2|}{|L_1|} = |L_1| + \frac{n}{|L_1|} \]

Minimized when

\[|L_1| = \frac{n}{|L_1|} \]

\[\Rightarrow |L_1|^2 = n \]

\[\Rightarrow |L_1| = \sqrt{n} \]

\[\Rightarrow \text{search cost} = 2\sqrt{n} \]

Resulting 2-level structure:

- 3 linked lists: \(3 \cdot \sqrt[3]{n}\)
- \(k\) linked lists: \(k \cdot \sqrt[k]{n}\)
- \(\lg n\) linked lists: \(\lg n \cdot \sqrt[\lg n]{n} = \lg n \cdot n^{1/\lg n} = \Theta(\lg n)\)

Becomes like a binary tree:

- Example: Search for 72
 * Level 1: 14 too small, 79 too big; go down 14
 * Level 2: 14 too small, 50 too small, 79 too big; go down 50
 * Level 3: 50 too small, 66 too small, 79 too big; go down 66
 * Level 4: 66 too small, 72 spot on
Insert

- New element should certainly be added to bottommost level
 (Invariant: Bottommost list contains all elements)

- Which other lists should it be added to?
 (Is this the entire balance issue all over again?)

- **Idea:** Flip a coin
 - With what probability should it go to the next level?
 - To mimic a balanced binary tree, we’d like half of the elements to advance to the next-to-bottommost level
 - So, when you insert an element, flip a fair coin
 - If heads: add element to next level up, and flip another coin (repeat)

- Thus, on average:
 - $1/2$ the elements go up 1 level
 - $1/4$ the elements go up 2 levels
 - $1/8$ the elements go up 3 levels
 - Etc.

- Thus, “approximately even”

Example

- Get out a real coin and try an example

- You should put a special value $-\infty$ at the beginning of each list, and always promote this special value to the highest level of promotion

- This forces the leftmost element to be present in every list, which is necessary for searching

 . . . many coins are flipped . . .

 (Isn’t this easy?)

- The result is a skip list.

- It probably isn’t as balanced as the ideal configurations drawn above.

- It’s clearly good on average.

- Claim it’s really really good, almost always.
Analysis: Claim of With High Probability

- **Theorem:** With high probability, every search costs $O(\lg n)$ in a skip list with n elements.

- What do we need to do to prove this? [Calculate the probability, and show that it’s high!]

- We need to define the notion of “with high probability”; this is a powerful technical notion, used throughout randomized algorithms.

- **Informal definition:** An event occurs with high probability if, for any $\alpha \geq 1$, there is an appropriate choice of constants for which E occurs with probability at least $1 - O(1/n^\alpha)$.

- In reality, the constant hidden within $O(\lg n)$ in the theorem statement actually depends on c.

- **Precise definition:** A (parameterized) event E_α occurs with high probability if, for any $\alpha \geq 1$, E_α occurs with probability at least $1 - c_\alpha/n^\alpha$, where c_α is a “constant” depending only on α.

- The term $O(1/n^\alpha)$ or more precisely c_α/n^α is called the error probability.

- The idea is that the error probability can be made very very very small by setting α to something big, e.g., 100.

Analysis: Warmup

- **Lemma:** With high probability, skip list with n elements has $O(\lg n)$ levels.

- (In fact, the number of levels is $\Theta(\log n)$, but we only need an upper bound.)

- **Proof:**

 - $\Pr\{\text{element } x \text{ is in more than } c \lg n \text{ levels}\} = 1/2^{c \lg n} = 1/n^c$

 - Recall Boole’s inequality / union bound:

 $$
 \Pr\{E_1 \cup E_2 \cup \cdots \cup E_k\} \leq \Pr\{E_1\} + \Pr\{E_2\} + \cdots + \Pr\{E_k\}
 $$

 - Applying this inequality:

 $\Pr\{\text{any element is in more than } c \lg n \text{ levels}\} \leq n \cdot 1/n^c = 1/n^{c-1}$

 - Thus, error probability is polynomially small and exponent ($\alpha = c - 1$) can be made arbitrarily large by appropriate choice of constant in level bound of $O(\lg n)$.

Analysis: Proof of Theorem

- **Cool idea:** Analyze search backwards—from leaf to root
 - Search starts at leaf (element in bottommost level)
 - At each node visited:
 * If node wasn’t promoted higher (got TAILS here), then we go [came from] left
 * If node was promoted higher (got HEADS here), then we go [came from] up
 - Search stops at root of tree

- Know height is \(O(\lg n) \) with high probability; say it’s \(c \lg n \)

- Thus, the number of “up” moves is at most \(c \lg n \) with high probability

- Thus, search cost is at most the following quantity:

 How many times do we need to flip a coin to get \(c \lg n \) heads?

- Intuitively, \(\Theta(\lg n) \)

Analysis: Coin Flipping

- **Claim:** Number of flips till \(c \lg n \) heads is \(\Theta(\lg n) \) with high probability

- Again, constant in \(\Theta(\lg n) \) bound will depend on \(\alpha \)

- **Proof of claim:**

 - Say we make \(10c \lg n \) flips
 - When are there at least \(c \lg n \) heads?

 \[
 \Pr\{\text{exactly } c \lg n \text{ heads}\} = \binom{10c \lg n}{c \lg n} \cdot \frac{1}{2}^{c \lg n} \cdot \frac{1}{2}^{9c \lg n}
 \]

 - \(\Pr\{\text{at most } c \lg n \text{ heads}\} \leq \binom{10c \lg n}{c \lg n} \cdot \frac{1}{2}^{9c \lg n} \)

 - Recall bounds on \(\binom{y}{x} \):

 \[
 \binom{y}{x}^x \leq \binom{y}{x} \leq \left(e \frac{y}{x} \right)^x
 \]
Applying this formula to the previous equation:

\[
\Pr\{\text{at most } c \log n \text{ heads}\} \leq \left(\frac{10c \log n}{c \log n}\right) \left(\frac{1}{2}\right)^{9c \log n}
\]

\[
\leq \left(\frac{e \cdot 10c \log n}{c \log n}\right)^{c \log n} \cdot \left(\frac{1}{2}\right)^{9c \log n}
\]

\[
= (10e)^{c \log n} \cdot \left(\frac{1}{2}\right)^{9c \log n}
\]

\[
= 2^{\log(10e) \cdot c \log n} \cdot \left(\frac{1}{2}\right)^{9c \log n}
\]

\[
= 2^{(\log(10e) - 9) c \log n}
\]

\[
= 2^{-\alpha \log n}
\]

\[
= 1/n^\alpha
\]

The point here is that, as \(10 \to \infty\), \(\alpha = 9 - \log(10e) \to \infty\), independent of (for all) \(c\)

- End of proof of claim and theorem

Acknowledgments

This lecture is based on discussions with Michael Bender at SUNY Stony Brook.