Genome Assembly

“The art of possible”
- Can’t just read the DNA base by base.
- First technique: “Sanger ladder”, 1977
 - Cells copy DNA base by base.
 - Can modify this process by “starving” each of (A,G,T,C).
 - Replication would terminate (with some probability) when encountering “starved” base.
 - Separate sequences by length.
 - Measure the lengths.
 - Repeat for each of (A,G,T,C).
- Other techniques:
 - Sequencing by hybridization.
 - Sequencing by synthesis.
 - ...

Shotgun approach
- Problem: this process has limited duration.
 - Can read at most a few hundred bases (up to 1000).
 - Insert length estimation error grows with insert length.
 - Human genome consists of ~3 billion bases.
- Solution:
 - Cut the sequence into short fragments (“inserts”).
 - Sequence each fragment.
- How to put it together??

Shotgun approach, ctd.
- Actual solution:
 - Take several copies of the sequence.
 - Cut them into inserts.
 - Sequence each insert.
 - Let:
 - \(L \) = read length
 - \(G \) = genome length
 - \(N \) = number of reads sequenced
 - Coverage = \(LN/G\).
 - Use the coverage to recover the whole sequence.

Assembly
- Consider inserts:
 - TAATCTA
 - ACTAA
 - AGT
 - TCTA
 - AGTAC
- Can you recover the original sequence?
Assembly steps

- **Overlap:**
 - Identify potentially overlapping reads

- **Layout:**
 - Find the order of reads along the sequence

- **Consensus**

- **Issues:**
 - Sufficient coverage and read length
 - Lander-Waterman formula
 - Measurement errors:
 - A few percent of the bases will be incorrect
 - Non-exact overlap
 - Repeats!!
 - Can lead to multiple layouts
 - >50% of human genome consists of repeats

Dealing with repeats

- **Hierarchical shotgun sequencing:**
 - Partition the sequence into clones of ~100 kb
 - The order of clones is known
 - Requires additional information
 - Cumbersome to obtain
 - Sequence each clone separately
 - Combine

- **Approach used by the Human Genome Project**

Dealing with repeats II

- **Whole genome shotgun**

- **Inserts vs. reads**

- **We can have long inserts, read only partially from each end:** “mate pairs”
 - Known distance between the reads
 - Provide additional information

- **Reconstruction results in**
 - Contigs
 - Scaffolds

- **Approach used by Celera Genomics**

References

- **Human genome:**
 (for both papers, Google-Scholar “human genome”)