Today

- Exact string matching
- Longest common substring (no gaps)

Exact String Matching

- Input: Two strings T[1...n] and P[1...m], containing symbols from alphabet Σ.
 E.g.:
 - Σ={A,G,T,C}
 - T[1...9]= “CAGTACATCGA....”
 - P[1...3]= “AGT”
- Goal: find all “shifts” 1≤ s ≤n-m such that T[s+1...s+m]=P
- Ideas?

Simple Algorithm

for s ← 0 to n-m
 Match ← 1
 for j ← 1 to m
 if T[s+j] ≠ P[j] then
 Match ← 0
 exit loop
 if Match=1 then output s
Analysis

- Running time of the simple algorithm:
 - Worst-case: O(nm)
 - Average-case (random text): O(n) (expectation)

- \(T_s \) = time spent on checking shift \(s \)
 (the number of comparisons until 1st mismatch)

- \[E[T_s] \leq 2 \] (recitations)

- \[E[\sum T_s] = \sum E[T_s] = O(n) \]

Worst-case

- Is it possible to achieve O(n) for any input?
 - Knuth-Morris-Pratt’77: deterministic
 - Karp-Rabin’81: randomized

- Digression: what is the difference between
 - Algorithm that is fast on a random input
 (as seen on the previous slide)
 - Randomized algorithm (as in the rest of this lecture)

Karp-Rabin Algorithm

- Idea: semi-numerical approach:
 - Consider all m-mers:
 \(T[1...m], T[2...m+1], ..., T[m-n+1...n] \)
 - Map each \(T[s+1...s+m] \) into a number \(t_s \)
 - Map the pattern \(P[1...m] \) into a number \(p \)
 - Report the m-mers that map to the same value as \(p \)

- Problem: how to map all m-mers in O(n) time?

Implementation

- Attempt I:
 - Assume \(\Sigma = \{0,1\} \)
 (for {A,G,T,C} convert: A \(\rightarrow 00 \), G \(\rightarrow 01 \), A \(\rightarrow 10 \), G \(\rightarrow 11 \))
 - Think about each \(T[s+1...s+m] \) as a number in binary representation, i.e.,
 \(t_s = T[s+1]2^m+T[s+2]2^{m-1}+...+T[s+m]2^0 \)
 - Find a fast way of computing \(t_{s+1} \) given \(t_s \)
 - Output all \(s \) such that \(t_s \) is equal to the number \(p \)
 represented by \(P \)

Magic formula

- How to transform
 \[t_s = T[s+1]2^{m-1}+T[s+2]2^{m-2}+...+T[s+m]2^0 \]
 into
 \[t_{s+1} = T[s+2]2^{m-1}+T[s+3]2^{m-2}+...+T[s+m+1]2^0 \]?

- Three steps:
 - Subtract \(T[s+1]2^{m-1} \)
 - Multiply by 2 (i.e., shift the bits by one position)
 - Add \(T[s+m+1]2^0 \)

- Therefore: \(t_{s+1} = (t_s \cdot T[s+1]2^{m-1}) \ast 2 + T[s+m+1]2^0 \)

Algorithm

\[t_{s+1} = (t_s \cdot T[s+1]2^{m-1}) \ast 2 + T[s+m+1]2^0 \]

- Can compute \(t_{s+1} \) from \(t_s \) using 3 arithmetic operations

- Therefore, we can compute all \(t_0, t_1, ..., t_{n-m} \)
 using \(O(n) \) arithmetic operations

- We can compute a number corresponding to \(P \) using \(O(m) \) arithmetic operations

- Are we done?
Problem

- To get \(O(n) \) time, we would need to perform each arithmetic operation in \(O(1) \) time
- However, the arguments are \(m \)-bit long!
- If \(m \) large, it is unreasonable to assume that operations on such big numbers can be done in \(O(1) \) time
- We need to reduce the number range to something more manageable

Hashing

- We will instead compute
 \[t'_s = T[s+1]2^{m+1} + T[s+2]2^{m+2} + \ldots + T[s+m]2^0 \mod q \]
 where \(q \) is an “appropriate” prime number
- One can still compute \(t'_{s+1} \) from \(t'_s \):
 \[t'_{s+1} = (t'_s - T[s+1]2^{m+1})2^m + T[s+m+1]2^0 \mod q \]
- If \(q \) is not large, we can compute all \(t'_s \) (and \(p' \)) in \(O(n) \) time

False positive probability

- Consider any \(t \neq p \). We know that both numbers are in the range \(\{0, \ldots, 2^m-1\} \)
- How many primes \(q \) are there such that
 \(t \mod q = p \mod q \iff (t, p) = 0 \mod q ? \)
- Such prime has to divide \(x = (t, p) \leq 2^k \)
 - Represent \(x = p_1^{e_1}p_2^{e_2} \ldots p_k^{e_k} \), \(p_i \) prime, \(e_i \geq 1 \)
 - What is the largest possible value of \(k \)?
 - Since \(2 \leq p_i \), we have \(x \geq 2^k \)
 - But \(x \leq 2^m \)
 - \(k \leq m \)
- There are \(\leq m \) primes dividing \(x \)

Algorithm

- Algorithm:
 - Let \([-] \) be a set of \(2nm \) “small” primes
 - Choose \(q \) uniformly at random from \([-] \)
 - Compute \(t_i \mod q, t_i \mod q, \ldots, \) and \(p \mod q \)
 - Report \(s \) such that \(t_i \mod q = p \mod q \)
- Analysis:
 - For each \(s \), the probability that \(T[s+1, \ldots, s+m] \neq P \) but
 \(t_i \mod q = p \mod q \)
 is at most \(m/2^{2n} = 1/2^{2n} \)
 - The probability of any false positive is at most
 \((m/2^{2n})2^n \leq 1/2 \)

Ignored “Details”

- How do we know that such \([-] \) exists?
 (That is, a set of \(2nm \) “small” primes)
- How do we choose a random prime from \([-] \) in \(O(n) \) time?
Aligning two (ungapped) strings
• Given two possibly related strings T and P
 – What is the longest common substring? (no gaps)

![Alignment Diagram](https://via.placeholder.com/150)

- **Offset:** +1
- **Offset:** -2

Aligning two sequences
• Longest common substring (LCS) problem (no gaps):
 – Input: Two strings T[1...n] and P[1...m], n ≥ m
 – Goal: Largest k such that
 \[T[i+1...i+k] = P[j+1...j+k] \]
 for some \(i, j \)
 – How can we solve this problem efficiently?
 – Hint: How can we check if LCS has length \(\geq k \)?

Checking for a common m-mer
• Algorithm:
 – Compute hashes \(t'_0, t'_1, ..., \) from T
 – Compute hashes \(p'_0, p'_1, ..., \) from P
 – Check if \(t'_i = p'_j \) for some pair \(i, j \)
 • Sort all hashes
 • Scan the sorted list to find equal hashes created from T and P

Analysis
• Algorithm:
 – Compute hashes \(t'_0, t'_1, ..., \) from T
 – Compute hashes \(p'_0, p'_1, ..., \) from P
 – Check if \(t'_i = p'_j \) for some pair \(i, j \)
 • Sort all hashes
 • Scan the sorted list to find equal hashes created from T and P

- **Radix Sort**: \(O(n \log n) \)
- \(O(n) \)
- \(O(m) \)
- \(O(n) \)
- \(O(n) \)
- **Total**: \(O(n) \)

Longest common substring
• We can check if LCS has length \(\geq k \) in \(O(n) \) time
• How to find the largest such \(k \) ?
• **Binary search** !
• Total time: \(O(n \log n) \)