Modeling biological sequences

- Ability to generate DNA sequences of a certain type
 - Not exact alignment to previously known gene
 - Preserving "properties" of type, not identical sequence
- Ability to recognize DNA sequences of a certain type
 - What (hidden) state is most likely to have generated observations
 - Find set of states and transitions that generated a long sequence
- Ability to learn distinguishing characteristics of each type
 - Training our generative models on large datasets
 - Learn to classify unlabelled data

Scoring probability of states & observations

What is the likelihood of

\[x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4 \]

emission transition emission transition emission

\[p = \frac{1}{2} \times P(1 \mid \text{Fair}) P(\text{Fair}, 3 \mid \text{Fair}) P(2 \mid \text{Fair}) P(\text{Fair}, 2 \mid \text{Fair}) P(1 \mid \text{Fair}) \]

\[= \frac{1}{2} \times \left(\frac{1}{10} \right)^2 \times \left(\frac{1}{2} \right)^2 \times \left(\frac{1}{6} \right)^2 \times \left(0.95 \right)^2 \times \left(0.05 \right)^2 \]

\[= 2.8 \times 10^{-10} \]

The three main questions on HMMs

1. Evaluation

 GIVEN a HMM M, and a sequence x,

 FIND Prob[x | M]

2. Decoding

 GIVEN a HMM M, and a sequence x,

 FIND the sequence \(\pi \) of states that maximizes \[P(x, \pi \mid M) \]

3. Learning

 GIVEN a HMM M, with unspecified transition/emission probs., and a sequence x,

 FIND parameters \(\theta = (e_i(\cdot)), a_{ij} \) that maximize \[P(x \mid \theta) \]
Markov Chains for CpG islands: (1) Training

- **Training Set:**
 - set of DNA sequences w/ known CpG islands
- **Derive two Markov chain models:**
 - ‘+’ model: from the CpG islands
 - ‘-’ model: from the remainder of sequence
- **Transition probabilities for each model:**

\[
\sum_{s}^{+} \frac{c_{st}^{+}}{c_{st}} = t' \quad s't \quad s \quad t \\
\sum_{s}^{-} \frac{c_{st}^{-}}{c_{st}} = t' \quad s't \quad s \quad t
\]

- is the number of times letter \(t \) followed letter \(s \) inside the CpG islands
- is the number of times letter \(t \) followed letter \(s \) outside the CpG islands

Markov Chains for CpG islands: (2) Model comparison

- Evaluate \(P(x, \pi^+) \)
 - \(a_0, C+, A+, T+, G+, C+, G+, T+ \)
- Evaluate \(P(x, \pi^-) \)
 - \(b_0, C-, A-, T-, G-, C-, G-, T- \)

HMM for CpG islands

- Build a single model that combines both Markov chains:
 - ‘+’ states: A+, C+, G+, T+
 - Emit symbols: A, C, G, T in CpG islands
 - ‘-’ states: A-, C-, G-, T-
 - Emit symbols: A, C, G, T in non-islands
- Emission probabilities distinct for the ‘+’ and the ‘-’ states
 - Infer most likely set of states, giving rise to observed emissions
 - ‘Paint’ the sequence with + and - states

Probability of given path \(p \) & observations \(x \)

\[
P(p, x) = (a_{0, C})^* (a_{C, G}^+) (a_{G, C}^-) (a_{C, G}^+) (a_{G, 0})
\]

Evaluation

Finding most likely state path

Problem 1: Decoding

How can we find the most likely path?
Finding the most likely path

- Find path π^* that maximizes total joint probability $P(x, \pi)$
- $P(x, \pi) = a_0^{\pi_1} \prod \phi_i(x_i) \times a_{\pi_i,\pi_{i+1}}$ start emission transition

The Viterbi Algorithm

<table>
<thead>
<tr>
<th>State</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input: $x = x_1 \ldots x_N$

Initialization:
- $V_0(0) = 1, V_i(0) = 0$, for all $k > 0$

Iteration:
- $V_i(i) = e_k(x_i) \times \max_j a_{\pi_i,\pi_j} V_j(i-1)$

Termination:
- $P(x, \pi^*) = \max_k V_k(N)$

Traceback:
- Follow max pointers back

Running time and space:
- Time: $O(K^2N)$
- Space: $O(KN)$

Problem 2: Evaluation

Find the likelihood a sequence is generated by the model

Simple: Given the model, generate some sequence x

Complex: Given x, was it generated by the model?

Given a sequence x, what is the probability that x was generated by the model (using any path)?
- $P(x) = \sum_{\pi} P(x, \pi)$

- Challenge: exponential number of paths
- (cheap) alternative:
 - Calculate probability over maximum (Viterbi) path π^*
- (real) solution:
 - Calculate sum iteratively using dynamic programming
The Forward Algorithm – derivation
Define the forward probability:

\[f(t) = P(x_t, \ldots, x_N, \pi_t = l) \]

\[= \sum_{\pi_{t-1}} P(x_{t-1}, \ldots, x_N, \pi_{t-1}, \pi_t = l) \theta_l(x_t) \]

\[= \sum_{\pi_{t-1}} f(t-1) a_{l\pi_{t-1}} \theta_l(x_t) \]

\[= \theta_l(x_t) \sum_{\pi_{t-1}} f(t-1) a_{l\pi_{t-1}} \]

Calculate total probability \[\Sigma_t P(x_t, \pi_t) \] recursively

- Assume we know \(f(t) \) for the previous time step (i-1)
- Calculate \(f_k(i) = \theta_k(x_i) \times \sum_j (f_j(i-1) \times a_{jk}) \)

The Forward Algorithm

Input: \(x = x_1 \ldots x_N \)

Initialization:

\(f_0(0) = 1, f_k(0) = 0, \text{ for all } k > 0 \)

Iteration:

\(f_k(i) = \theta_k(x_i) \times \sum_j (f_j(i-1) \times a_{jk}) \)

Termination:

\(P(x, \pi^*) = \sum_k f_k(N) \)

Running time and space:

- Time: \(O(K^2N) \)
- Space: \(O(KN) \)

In practice:

- Sum of log scores is difficult
- \(\Rightarrow \) approximate \(\exp(1+p+q) \)
- \(\Rightarrow \) scaling of probabilities

Problem 3: Evaluation

Find the likelihood an emission is generated by a state

Calculate \(P(\pi_i = \text{CPG}^+ \mid x_i = \text{G}) \)

- With no knowledge (no characters)
 - \(P(\pi_i = k \mid x_i = \text{G}) = \text{most likely state (prior)} \)
 - Time spent in markov chain states

- With very little knowledge (just that character)
 - \(P(\pi_i = k \mid x_i = \text{G}) = (\text{prior}) \times (\text{most likely emission}) \)
 - Emission probabilities adjusted for time spent

- With knowledge of entire sequence (all characters)
 - \(P(\pi_i = k \mid x_i = \text{G}) = \text{AGCGCG...GATTATCGTCGTA} \)
 - Sum over all paths that emit 'G' at position 7
 - \(\Rightarrow \) Posterior decoding

Summary

- Generative model
 - Hidden states
 - Observed sequence
- 'Running' the model
 - Generate a random sequence
- Observing a sequence
 - What is the most likely path generating it?
 - Viterbi algorithm
 - What is the total probability generating it?
 - Sum probabilities over all paths
 - Forward algorithm
- Next: Classification
 - What is the probability that "CGGTACG" came from CpG+?
Motivation for the Backward Algorithm

We want to compute
\[P(\pi_i = k \mid x) \]
the probability distribution on the \(i \)th position, given \(x \).

We start by computing
\[P(\pi_i = k, x) = P(x_1 \ldots x_i, \pi_i = k, x_{i+1} \ldots x_N) \]
\[= P(x_1 \ldots x_i, \pi_i = k) P(x_{i+1} \ldots x_N \mid x_1 \ldots x_i, \pi_i = k) \]
Forward, \(f_k(i) \)
Backward, \(b_k(i) \)

The Backward Algorithm – derivation

Define the backward probability:
\[b_k(i) = P(x_{i+1} \ldots x_N \mid \pi_i = k) \]
\[= \sum_{\pi_{i+1}} \ldots \sum_{\pi_N} P(x_{i+1}, x_{i+2}, \ldots, x_N, \pi_{i+1}, \ldots, \pi_N \mid \pi_i = k) \]
\[= \sum_{\pi_{i+1}} P(x_{i+1} \mid \pi_{i+1} = l) b_{l(i+1)} \]
\[= \sum_{l} e_l(x_{i+1}) a_{kl} b_{l(i+1)} \]
Calculate total end probability recursively

• Assume we know \(b_l \) for the next time step \((i+1) \)

• Calculate
\[b_k(i) = \sum_{l} (e_l(x_{i+1}) a_{kl} b_{l(i+1)}) \]

Putting it all together: Posterior decoding

• \(P(k) = P(\pi_i = k \mid x) = (i)b_k(i) / P(x) \)
 – Probability that \(i \)th state is \(k \), given all emissions \(x \)
• Posterior decoding
 – Define most likely state for every of sequence \(x \)
 – \(x_i = \arg \max_k P(\pi_i \mid x) \)
• Posterior decoding ‘path’ \(\pi^* \)
 – For classification, more informative than Viterbi path \(\pi^* \)
 – More refined measure of “which hidden states” generated \(x \)
 – However, it may give an invalid sequence of states
 – Not all \(j \rightarrow k \) transitions may be possible

Summary

• Generative model
 – Hidden states
 – Observed sequence
• ’Running’ the model
 – Generate a random sequence
• Observing a sequence
 – What is the most likely path generating it?
 – Viterbi algorithm
 – What is the total probability generating it?
 – Sum probabilities over all paths
 – Forward algorithm
• Classification
 – What is the probability that “CGGTACG” came from Cpg+?
 – Forward + backward algorithm
 – What is the most probable state for every position
 – Posterior decoding
Problem 3: Learning

Estimate model parameters based on training data

Case 1. When the right answer is known

Given \(x = x_1, ..., x_N \) for which the true \(\pi = \pi_1, ..., \pi_N \) is known,

Define:

\[
A_{il} = \text{# times } k \to l \text{ transition occurs in } \pi \\
E_k(b) = \text{# times state } k \text{ in } \pi \text{ emits } b \text{ in } x
\]

We can show that the maximum likelihood parameters \(\theta \) are:

\[
a_{il} = \frac{A_{il}}{\sum_i A_{il}} \\
e_k(b) = \frac{E_k(b)}{\sum_c E_k(c)}
\]

Solution for small training sets:

Add pseudocounts:

\[
A_{il} = \text{# times } k \to l \text{ transition occurs in } \pi + r_{il} \\
E_k(b) = \text{# times state } k \text{ in } \pi \text{ emits } b \text{ in } x + r_k(b)
\]

\(r_{il}, r_k(b) \) are pseudocounts representing our prior belief

Larger pseudocounts \(\Rightarrow \) Strong prior belief

Small pseudocounts (\(c < 1 \)): just to avoid 0 probabilities

Case 2. When the right answer is unknown

Intuition: When we know the underlying states, the best estimate is the average frequency of transitions & emissions that occur in the training data

Drawback:

Given little data, there may be overfitting: \(P(x|\theta) \) is maximized, but \(\theta \) is unreasonable if \(0 \) probabilities – VERY BAD

Example:

Given 10 casino rolls, we observe \(x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3 \)

Then:

\(a_{FF} = 1; a_{FL} = 0 \)

\(e_F(1) = e_F(3) = .2; e_F(2) = .3; e_F(4) = 0; e_F(5) = e_F(6) = .1 \)

Pseudocounts

Example: dishonest casino

We will observe player for one day, 500 rolls

Reasonable pseudocounts:

\(r_{FF} = r_{FL} = r_{LF} = r_{LL} = 1; \)

\(r_{FL} = r_{LF} = r_{FF} = r_{LL} = 1; \)

\(r_{F}(1) = r_{F}(2) = ... = r_{F}(6) = 20 \) (strong belief fair is fair)

\(r_{F}(1) = r_{F}(2) = ... = r_{F}(6) = 5 \) (wait and see for loaded)

Above #s pretty arbitrary – assigning priors is an art
Case 2. When the right answer is unknown

We don’t know the true $A_{k,b}$, $E_{j}(b)$

Idea:

- We estimate our “best guess” on what $A_{k,b}$, $E_{j}(b)$ are
- We update the parameters of the model, based on our guess
- We repeat

Starting with our best guess of a model M, parameters θ:

Given $x = x_1 \ldots x_N$ for which the true $\pi_1 \ldots \pi_N$ is unknown,

We can get to a provably more likely parameter set θ.

Principle: EXPECTATION MAXIMIZATION

1. Estimate $A_{k,b}$, $E_{j}(b)$ in the training data
2. Update θ according to $A_{k,b}$, $E_{j}(b)$
3. Repeat 1 & 2, until convergence

Estimating new parameters

To estimate $A_{k,b}$:

At each position i of sequence x,

Find probability transition $k \rightarrow l$ is used:

$$P(\pi_i = k, \pi_{i+1} = l | x) = \frac{Q}{P(x)} = \frac{P(\pi_i = k, \pi_{i+1} = l, x_1 \ldots x_N)}{P(x)}$$

where $Q = P(x_1 \ldots x_i, \pi_i = k) = P(x_1 \ldots x_{i-1}, \pi_{i-1} = k) P(x_i | \pi_{i-1} = k)$

So: $P(\pi_i = k, \pi_{i+1} = l | x, \theta) = \frac{f_k(i) a_{k,l} e(x_{i+1}) b_{l}(i+1)}{P(x | \theta)}$

Similarly,

$$E_{j}(b) = \frac{1}{P(x)} \sum_i \{i | x_i = b\} f_j(i) b_j(i)$$

The Baum-Welch Algorithm

Initialization:

- Pick the best-guess for model parameters (or arbitrary)

Iteration:

1. Forward
2. Backward
3. Calculate $A_{k,b}$, $E_{j}(b)$
4. Calculate new model parameters $a_{k,l}$, $e_j(b)$
5. Calculate new log-likelihood $P(x | \theta)$

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until $P(x | \theta)$ does not change much
The Baum-Welch Algorithm – comments

Time Complexity:

\[\# \text{iterations} \times O(KN) \]

- Guaranteed to increase the log likelihood of the model

\[P(\theta | x) = P(x, \theta) / P(x) = P(x | \theta) / (P(x) P(\theta)) \]

- Not guaranteed to find globally best parameters
 - Converges to local optimum, depending on initial conditions

- Too many parameters / too large model: Overtraining

Alternative: Viterbi Training

Initialization: Same

Iteration:
1. Perform Viterbi, to find \(\pi^* \)
2. Calculate \(\alpha_k, \beta_k(b) \) according to \(\pi^* \) + pseudocounts
3. Calculate the new parameters \(a_{kl}, e_k(b) \)

Until convergence

Notes:
- Convergence is guaranteed – Why?
- Does not maximize \(P(x | \theta) \)
- In general, worse performance than Baum-Welch

What have we learned?

- Generative model
 - Hidden states / Observed sequence
- 'Running' the model
 - Generate a random sequence
- Observing a sequence
 - What is the most likely path generating it?
 - Viterbi algorithm
 - What is the total probability generating it?
 - Sum probabilities over all paths
 - Forward algorithm
- Classification
 - What is the probability that "CGTGACG" came from CpG+?
 - Forward + backward algorithm
 - What is the most probable state for every position
 - Posterior decoding
- Training
 - Estimating parameters of the HMM
 - When state sequence is known
 - Simply compute maximum likelihood A and E
 - When state sequence is not known
 - Baum-Welch: Iterative estimation of all paths / frequencies
 - Viterbi training: Iterative estimation of best path / frequencies