Today: Competitive Analysis
- Self-organizing lists
- Move-To-Front heuristic
- "Competitive" Analysis.

General Theme:
- Often it is good to ask not "How poorly does my algorithm do?" but rather "Is it much worse than other algorithms on the same input?".
- Especially good when algorithm works with partial knowledge
  - e.g. does not know the future
  - e.g. remembers little of the past

- In such cases all algorithms perform poorly in "worst-case"; but some tend to perform poorly only in the worst-case, while others perform poorly everywhere. ... will be good to distinguish.
- Competitive analysis will do this.
**Self-Organizing Lists** (Toy Data Structure) (Real Stuff More Complex...)

- Static database of $N$ elements

- Only operation: $\text{Access}(x)$: returns record with key $x$.

- Data Structure: list $L$ containing all $n$ elements; order allowed to change by swaps of adjacent elements.

- Cost of $\text{Access}(x) = \text{position of } x \text{ in } L$.

$$\triangleq \text{rank}_L(x)$$

**Goal:** Maintain order so as to minimize total cost of accesses for sequence $x_1, x_2, x_3, \ldots, x_m$

**Catch:** Don't know sequence in advance!
Example

- $n = 6$  
  $\text{Set} = \{3, 4, 12, 14, 17, 50\}$

$L = \begin{array}{ccccccc}
12 & 3 & 50 & 14 & 17 & 4 \\
\end{array}$

- $\text{rank}_L(14) = 4$
- $\text{rank}_L(3) = 2 \Rightarrow \text{cost of } \text{Access}(3) = 2$;

- Cost of swapping adjacent elements = 1.

$L' = \begin{array}{ccccccc}
12 & 50 & 3 & 14 & 17 & 4 \\
\end{array}$

$\text{Cost}(L \rightarrow L') = 1$

---

Food For Thought:

How would you use swaps to minimize the cost of $\text{Access}$ on the sequence

$12, 12, 12, 12, 12, \ldots \ 12, 4, 4, 4, \ldots \ 4$
When we consider the task of "optimizing" the access costs, by careful use of swaps, it is natural to ask the question: What information do we have when we make the decision to swap elements?

**OFFLINE VERSION**

- Entire sequence

  12, 12, ... 12, 4, 4, ... 4

  given in advance.

- In this case, for this example at least, it is clear that after the sequence of **Access to [12]** finishes, we should swap **4** till it is at the front of the list, and then all remaining **Accesses** will cost 4 units per **Access**.
Online Version

Here you get to see the sequence one element at a time.

- Access (12);

What would you do to the list?

- Access (14);

What would you do to the list?

- Could swap 4 to the front, but next Access may be to 12.
- Could leave 4 where it is, but next (100) Accesses may be to 4.

Indeed chasing this example carefully, we get...

for every algorithm A,

the exist a sequence \( x_1, \ldots, x_m \)

such that \( \text{cost}_A(x_1, \ldots, x_m) = m \cdot n \)
So ... every online algorithm has the same worst-case performance? 

i.e., all algorithms equally good? bad? 

Doesn’t seem satisfactory.

A heuristic: MOVE-TO-FRONT (MTF) rule.

- Every time you Access \( x \), move \( x \) to front of \( L \) using swaps.

- Cost = \( 2 \cdot \text{rank}_L(x) \).

Seems to work very well "in practice".

Can we justify?

Will do so, by comparing against cost of other (even offline) algorithms on some.
**Competitive Analysis**

Online algorithm $A$ is $\alpha$-competitive if $\exists \, \alpha \geq 1$ s.t. for every sequence $S = (x_1, \ldots, x_m)$,

$$\text{cost}_A(S) \leq \alpha \cdot \text{OPT}(S) + k$$

where $\text{OPT}(S)$ is minimum cost of accessing $S$, even for offline algorithm.

In other words, "$A$ is competitive" implies that for every sequence, it performs not much worse than any other algorithm.

**Theorem:** MTF is $4$-competitive

i.e., on every sequence $S = x_1, x_2, \ldots, x_m$

$$\text{cost}_{\text{MTF}}(S) \leq 4 \cdot \text{OPT} \cdot \text{cost}(S)$$
How to prove this?

<table>
<thead>
<tr>
<th>Time</th>
<th>MTF</th>
<th>OPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>L₀</td>
<td>L₀</td>
</tr>
<tr>
<td>1</td>
<td>rank₁,₀(x₁) L₁</td>
<td>L₁</td>
</tr>
<tr>
<td>2</td>
<td>rank₁,₁(x₂) L₂</td>
<td>L₂</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>rank₁,₀(xᵢ) Lᵢ</td>
<td>Lᵢ</td>
</tr>
</tbody>
</table>

Wish to compare

\[2 \text{rank}_{L_{i-1}}(x_i) \text{ vs. } \text{rank}_{L_{i-1}^*}(x_i) + ε_i\]

But for any one i, Lᵢ is maybe large. Rhs maybe 1.
Why? At time \( t-1 \), OPT may swap \( x_i \) to front with many swaps and thus make \( \text{Rank}_{L_i} \( x_i \) = 1."

How to change OPT for this "prospective" move?

Idea: Potential function \( \Phi \).

\( \Phi_i = \text{measures "distance" between } L_i \) and \( L^* \).

**Defn:** \( \tilde{\Phi}_i (L_i, L^*_i) = \Phi_i - I \) where \( I \) is the number of pairs \( (x, y) \) such that \( x \in L_i \), \( y \in L^*_i \), and \( y < x \) in the list \( L^*_i \).

\( \tilde{\Phi}_i = \text{"# inversions"} \).
Intuition:
if $\phi_i$ large: $L_i \approx L_i^*$
very different;
but $Access(x_{i+1})$ will likely
make them "more" similar
if $\phi_i$ small: $L_i \approx L_i^*$
very similar, so $Access(x_{i+1})$
will cost same amount for
$OPT$ and $MTF$.

Example

$\phi(L, L^*) = 3$
Lemma: After \( i^{th} \) operation

\[
2 \cdot \text{rank}_{L_{i-1}}(x_i) + 2 \cdot (\Phi_i - \Phi_{i-1}) \\
\leq 4 \cdot \left[ \text{rank}_{L_{i-1}}(x_i) + \varepsilon_i \right]
\]

Will prove this soon, but why does

Lemma \implies \text{Theorem}?

Note: 1. \( \Phi_0 = 0 \)

2. \( \Phi_i \geq 0 \) \( \forall i \)

3. Have

\( H_i \cdot \text{cost}(x_i) + 2(\Phi_i - \Phi_{i-1}) \leq 4 \cdot \text{OPT}(x_i) \)

Summing over \( i \) ...

\[
\sum_{i=1}^{m} \text{cost}(x_i) + 2 \sum_{i=1}^{m} (\Phi_i - \Phi_{i-1}) \leq 4 \sum_{i=1}^{m} \text{OPT}(x_i)
\]
\[
\text{cost}_{\text{MTF}}(S) + 2 \overline{\Phi}_m - 2 \overline{\Phi}_0 \leq 4 \text{OPT}(S)
\]

\[
\nu \leq 0
\]

\[
\downarrow
\]

\[
\text{cost}_{\text{MTF}}(S) \leq 4 \text{OPT}(S) \quad \text{[Theorem!]} \quad \quad
Claim 1:

\[2 \text{rank}_{L_{i-1}}(x_i) + 2\left(\overline{\Phi}_{i-\frac{1}{2}} \right) \leq 4 \cdot \text{rank}_{L_{i-1}}(x_i)\]

Claim 2:

\[2\left(\overline{\Phi}_{i} - \overline{\Phi}_{i-\frac{1}{2}}\right) \leq 4 \cdot t_i\]

First note that Claim 1 + Claim 2

\[\Rightarrow\] Lemma (just add the inequalities)

So let's prove the claims.

Proof of Claim 2: Obvious .... in fact \( t_i \) swaps in \( \frac{t_i}{2} \) is the only one that inverts by \( t_i \).

\[\Rightarrow \overline{\Phi}_i \leq \overline{\Phi}_{i-\frac{1}{2}} + t_i\]

which is stronger than what we want.
Proof of Claim 1: (finally we're getting to the heart of the analysis).

\[
\begin{align*}
L_{i-1} & \xrightarrow{\square} 1 \xrightarrow{\square} \cdots \xrightarrow{\square} x_i \\
L_i \xrightarrow{\square} 1 \xrightarrow{\square} \cdots \xrightarrow{\square} \cdots \\
\end{align*}
\]

\[
\text{rank}_{L_{i-1}} (x_i) = k \\
\text{rank}_{L_{i-1}}^* (x_i) = l \\
\overline{\Phi}_{i-1} - \overline{\Phi}_{i-1} = ?
\]

\[
\begin{align*}
L_i & \xrightarrow{\square} 1 \xrightarrow{\square} \cdots \\
\end{align*}
\]

* Only inversions that change are of the form \((x_i, y)\)*
<table>
<thead>
<tr>
<th>Location of $y$</th>
<th>Effect on $\Phi_{i-\frac{1}{2}} - \Phi_i$</th>
<th># of such $y$'s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y &lt; \ell_{i-1}$</td>
<td>$+1$</td>
<td>$\leq \ell$</td>
</tr>
<tr>
<td>$y &lt; L^*_{i-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y &lt; \ell_{i-1}$</td>
<td>$-1$</td>
<td>$\geq \ell_{k-\ell}$</td>
</tr>
</tbody>
</table>

$y > L^*_{i-1}$

$y > \ell_{i-1}$

No effect

Doesn't matter

$y < L^*_{i-1}$

No effect

Doesn't matter

$y < \ell_{i-1}$

No effect

Doesn't matter

$y > \ell_{i-1}$
Thus \[ \Phi_{i-\frac{1}{2}} - \Phi_{i-1} \leq 2l - k \]

\[ \Rightarrow 2k + 2(\Phi_{i-\frac{1}{2}} - \Phi_{i-1}) \leq 2k + 4l - 2k \]

\[ = 4l = 4 \text{rank}_{L_{i-1}} (x_i) \]

\[ \mathbb{Q} (\text{of Claim 1}) \]

Conclusions:

1. Competitive analysis often much more useful than "worst-case" analysis (imagine applying it to the stock market...)

2. Potential functions can help establish competitive bounds.
Addendum

Weak vs. strictly-competitiveness:

In our definition of $\alpha$-competitive, we allowed a constant $k \geq 0$

s.t. for every sequence $S$

$$\text{cost}_A(S) \leq \alpha \cdot \text{cost}_{\text{opt}}(S) + k.$$ 

In the literature, this is also called weak competitiveness.

A stronger requirement would ask for this $k$ to be zero.

If an algorithm satisfies this with $k = 0$, then we call it

strictly competitive.

In lecture, we showed that MTF was strictly 4-competitive.