Notes from Recitation 1, September 8, 2006

Horner’s Rule

We can specify an nth degree polynomial specified by giving $A[i]$, the coefficient of the x^i term. Thus, a sequence of coefficients $A[0], A[1], A[2], \ldots A[n]$ corresponds to a polynomial

The problem is, given an array $A[0..n]$ and a value for x, compute $P(A[0..n], x)$. Some first attempts:

1. One straightforward way to compute $P(A[0..n], x)$ is to compute one term at a time, using k multiplications to compute $A[k] \cdot x^k$. This algorithm takes $\Theta(n^2)$ time (the number of multiplications is $\sum_{i=1}^n i = O(n^2)$, and the number of additions is $n - 1$).

 Aside from the array of coefficients, this algorithm uses $O(1)$ additional space to store the current sum and temporary variables.

2. If we use a fast exponentiation algorithm to compute x^n, then computing x^n requires $\Theta(\log n)$ operations. Then we can compute $P(A[0..n], x)$ in $\Theta(n \log n)$ time, using $O(1)$ additional space.

3. If we store the values of $x, x^2, \ldots x^n$ in a table, then we can do the computation in $\Theta(n)$ time, but using $\Theta(n)$ additional space.

Horner’s rule can do this computation in $\Theta(n)$ time, using $O(1)$ additional space.

Horner($A[0..n]$, x)

$$y \leftarrow A[n];$$

$$i \leftarrow n;$$

while ($i > 0$)

$$i \leftarrow i - 1;$$

$$y \leftarrow x \cdot y + A[i];$$

Follow the method for proving correctness of an iterative algorithm:

1. What is a good loop invariant I? Look at the value of y after a few iterations:

$$i = n \implies y = A[n]$$

$$i = n - 1 \implies y = A[n] \cdot x + A[n - 1]$$

$$i = n - 2 \implies y = A[n] \cdot x^2 + A[n - 1] \cdot x + A[n - 2]$$

$$\vdots$$

Try a loop invariant

$$y = \sum_{j=1}^n A[j]x^{j-1}.$$

2. Proof the invariant holds by induction. For simplicity, we perform induction “backwards” on i, i.e., starting with a base case when $i = n$, and decreasing i.

1
• **Base Case:** When \(i = n \), \(y = A[n] \).

• **Inductive Step:** Assume for \(i = k \) (or alternatively, for \(n \geq i \geq k \)), that \(y = \sum_{j=k}^{n} A[j]x^{j-k} \).

 We want to show for \(i = k - 1 \), that \(y = \sum_{j=k-1}^{n} A[j]x^{j-(k-1)} \).

 After the loop when \(i = k - 1 \), we compute a new \(y' = x \ast y + A[k - 1] \). This gives us

\[
\begin{align*}
 y' &= x \cdot \left(\sum_{j=k}^{n} A[j]x^{j-k} \right) + A[k - 1] \\
 &= \left(\sum_{j=k}^{n} A[j]x^{j-k+1} \right) + A[k - 1] \\
 &= \left(\sum_{j=k}^{n} A[j]x^{j-(k-1)} \right) + A[k - 1]x^0 \\
 &= \sum_{j=k-1}^{n} A[j]x^{j-(k-1)} \\
 &= \sum_{j=1}^{n} A[j]x^{j-1}
\end{align*}
\]

3. When the loop terminates, \(i = 0 \), so \(y = \sum_{j=0}^{n} A[j]x^{j} = P(A[0..n], x) \). This is exactly the value we were trying to compute.

4. The while loop always gets executed exactly \(n \) times, as long as \(n \) is nonnegative.