Lecture 12

Efficient dynamic search structures so far:
- 2-3-4 trees → Delete is tricky
- red-black trees → many cases
- AVL trees → some cases

Could you implement these?
Probably, with time...
But probably not without looking up some details
(a few years after this class)

Skip lists [Pugh 1989]
- a simple, efficient dynamic search structure
 that you'll never forget
- randomized: $O(\lg n)$ in expectation
 & with high probability
 \implies very strong bound on tail of distribution
 \implies “almost always” $O(\lg n)$

Experiment last year: implement skiplists
≈ 10 minutes for linked list $\{\text{not bad}\}$
≈ 30 minutes for skip list
$[\approx 60$ minutes debugging]
Starting from scratch: (from first principles)
 (initial focus: Search performance)
- simplest data structure:
 (sorted) linked list
- worst-case search: \(\Theta(n) \)
- how to improve?

Idea: 2 sorted linked lists
 - each element in one or both lists

Example: (New York City 7th Ave. subway line)

- \(14, 23, 34, 42, 50, 59, 66, 72, 79, 86, 96, 103, 110, 116, 125 \)

- link between copies in both lists
- all elements in bottom list

Search(\(x \)):

- walk right in top list \(L_1 \)
 until going right would go too far
- walk down to bottom list \(L_2 \)
- walk right in \(L_2 \) until found (or not)
Two-lists data structure:
Which elements should go in top list L_1?
- in subway: "popular stations"
- here care about **worst-case performance**
- best to evenly space nodes in L_1
- but how many should be in L_1?

Analysis: search cost $\approx \frac{|L_1|}{n} + \frac{|L_2|/|L_1|}{n}$

- minimized (up to const. factors)
 - when $|L_1| = |L_2|/|L_1|$
 - i.e., $|L_1|^2 = |L_2| = n$ (everyone in L_2)
 - i.e., $|L_1| = \sqrt{n}$.
 - \Rightarrow search cost $\approx \sqrt{n} + \frac{n}{\sqrt{n}} = 2\sqrt{n}$

Structure:

![Diagram of two-lists data structure]
More lists?
- 2 sorted lists $\Rightarrow 2 \sqrt{n}$
- 3 sorted lists $\Rightarrow 3 \sqrt[3]{n}$
- k sorted lists $\Rightarrow k \sqrt[k]{n}$
- $\lg n$ sorted lists $\Rightarrow \lg n \cdot \sqrt{\frac{\lg n}{\lg n}} = \frac{2^{\frac{\lg n}{2}}}{2} = 2$

$\lg n$ lists: IDEAL SKIP LIST
- like a binary tree where key(x) = min in subtree
 (actually a level-linked B^+-tree)

Example: Search(72)

Skip list data structure maintains roughly this structure subject to updates
(insert/delete)
Insert(x):
- Search(x) to find where x fits in bottom list
- always insert x in bottom list

INVARIENTS:
1. bottom list contains all elements
2. each list contains subset of list below
- insert x into some list above. WHICH?

IDEA: Flip coin
If heads: promote to next level up
 flip again
 with what probability should we promote?
 \(1/2 \Rightarrow \text{fair coin} \)

\(\Rightarrow \) on average:
- \(1/2\) the elements promoted 0 levels
- \(1/4\) the elements promoted 1 level
- \(1/8\) the elements promoted 2 levels
- etc.

\(\Rightarrow \) approximately balanced?

EXERCISE: Let's build a skip list with a real coin!

Minor change:
Add special \(-\infty\) value to every list
 \(\Rightarrow\) can use same Search algorithm

Delete(x): just remove x from all lists
Intuitively, skip lists are pretty good on average. Claim they are really, really good, almost always.

Theorem: With high probability, every search in an n-element skip list costs $O(\log n)$.

With high probability (w.h.p.),

- informal definition: event E occurs w.h.p. if, for any $\alpha > 1$, there is an appropriate choice of constants for which E occurs with probability at least $1 - O(\frac{1}{n^\alpha})$.

- in fact, constant in $O(\log n)$ depends on α.

- formal definition: parameterized event E_α occurs w.h.p. if, for any $\alpha > 1$, there is a C_α such that E_α occurs with probability $\geq 1 - C_\alpha / n^\alpha$.

- idea: can make error probability $O(1/n^\alpha)$ very small by setting α large, e.g., 100.

- almost certainly, bound remains true for entire execution of polynomial-time algorithm.

Boole's inequality/union bound: For events E_1, E_2, \ldots, E_k

$$\Pr[E_1 \cup E_2 \cup \cdots \cup E_k] \leq \Pr[E_1] + \Pr[E_2] + \cdots + \Pr[E_k]$$

\Rightarrow if $k = n^{O(1)}$ & E_1, E_2, \ldots, E_k occur w.h.p. then $E_1 \cap E_2 \cap \cdots \cap E_k$ occurs w.h.p.
Analysis: warmup

Lemma: With high probability, number of levels in an n-element skip list is $O(\log n)$

Proof: Error probability for $\leq c \log n$ levels

$$= \Pr \{ \text{levels} \geq c \log n \}$$

$$\leq n \cdot \Pr \{ \text{element } x \text{ promoted } \geq c \log n \text{ times} \}$$

by Boole’s inequality

$$= n \cdot \left(\frac{1}{2}\right)^{c \log n}$$

$$= n^{1/c}$$

$$= n^{c^{-1}}$$

$$= 1/n^\alpha$$ for $\alpha = c^{-1}$

polyonmially small

- can make α arbitrary large
 - by choosing c in $O(\log n)$ large enough. □
Theorem: With high probability, any search in an \(n \)-element skip list costs \(O(\lg n) \).

Cool idea: analyze search backwards - leaf to root
- search starts [ends] at leaf
- at each node visited:
 - if node wasn't promoted higher (tails here) then we go [came from] left
 - if node was promoted higher (heads here) then we go [came from] up
- search stops [starts] at root (or -\(\infty \))

Proof of theorem:
- Search makes "up" & "left" moves until it reaches root (or -\(\infty \))
- number of "up" moves \(\leq \) number of levels
 \(\leq c \lg n \) w.h.p. (lemma)

\(\Rightarrow \) w.h.p., number of moves
 \(\leq \) number of coin flips to get \(c \lg n \) heads
Claim: Number of coin flips till $c \log n$ heads = $\Theta(c \log n)$ with high probability

Proof: Obviously $\geq c \log n = \Omega(c \log n)$
Let's say we flip $d \log n$ times.
When are there $\geq c \log n$ heads?
(C later generalize to arbitrary values of 0)
\# configurations with k heads = $\binom{d \log n}{k}$
\# configurations with $< k$ heads = $\sum_{i=0}^{k-1} \binom{d \log n}{i}$

For $i \leq \frac{1}{3}d \log n$, \(\binom{d \log n}{i} = \frac{d \log n - i + 1}{i} \binom{d \log n}{i-1} \)

\[\geq 2 \]

\[\sum_{i=0}^{\frac{1}{3}d \log n} \binom{d \log n}{i} \leq \binom{d \log n}{d \log n + 1} / 2 \]
\[\leq \binom{d \log n}{d \log n + 1} / 2 (d/3 - 1) \log n \]
\[\leq \frac{1}{2} \sum_{i=0}^{d \log n} \binom{d \log n}{i} / 2 (d/3 - 1) \log n \]
\[\text{all configurations} = 2^{d \log n} \]

$\Rightarrow \Pr[\# \text{ heads } < c \log n] \leq \frac{1}{2} (d/3 - 1) \log n$

$= \frac{1}{n} (d/3 - 1) c$

$= \frac{1}{n^\alpha}$ where $\alpha = (d/3 - 1) c$

Key: $\alpha \to \infty$ as $d \to \infty$, for any $c > 0$

\Rightarrow set d (const. in $O(\log n)$ bound) large enough

for desired value of α