Lecture 24

Want:
1. hard problems (NP-complete)
2. fast algorithms (poly. time)
3. exact solutions (correctness)

PICK ANY TWO

2 & 3: most of this class
1: dealing with NP-complete problems (this week)

1 & 2: approximation algorithms (L25)
- allow suboptimal solutions
- bound the error (e.g. within 5%)

1 & 3: fixed-parameter algorithms (today)
- allow exponential time
- contain exponential to parameter, not \(n \)
- improve understanding of exponential behavior
- get fast solutions when parameter is small
Fixed-parameter algorithms [Downey & Fellows 1997]

For some computational problem π, a **parameter** is a function P mapping (inputs for π) to (nonnegative integers). Normally write $k = P(\text{input})$.

$(\pi, P) = "\pi\text{ with respect to } P\text{"}$ is a **parameterized problem**.

- most decision problems come equipped with a "natural parameter":

CLIQUE
- **input**: graph G, nonneg. integer k
- **output**: does G have a clique of size k?

Goal: confine exponential behavior to k instead of n
Vertex cover:
- in an undirected graph $G = (V, E)$,
 a **vertex cover** is a subset $S \subseteq V$
 such that every edge has an endpt. in S
 i.e. $(u, v) \in E \Rightarrow u \in S$ or $v \in S$
- e.g. V is a vertex cover

![Vertex cover graph]

$|S| = 3$

VERTEX COVER problem:
- **input:** graph G, nonneg. integer k
- **output:** does G have a vertex cover S
 of size $|S| = k$? (i.e. $|S| \leq k$)

Note: can have n large, k small

![Vertex cover graph]

$|S| = 1$
Trivial algorithm: (BAD)
- try all \((k)\) subsets \(S\) of \(k\) vertices
- for each \(S\), test coverage in \(O(V+E)\) time
 \(\Rightarrow O(V^k (V+E))\) time
- is this any good?
 - polynomial for any fixed \(k\)
 - but not the same polynomial
 e.g., not \(O(n^{100})\) for any fixed \(k\)
 - inefficient in most cases in practice
 \(\Rightarrow\) define \(n_f(k)\) to be BAD
Smarter algorithm: (GOOD)

- Pick arbitrary edge \(e = (u, v) \)
- Know that either \(u \in S \) or \(v \in S \) (or both)
 - but don't know which
- Guess: try both possibilities
 1. Add \(u \) to \(S \)
 - Delete \(u \) & incident edges from \(G \)
 - Recurse with \(k-1 \)
 2. Ditto with \(v \) instead of \(u \)

[This actually covers \(3^{rd} \) case where \(u, v \in S \)]

- Like guessing in dynamic programming
- Except memoization doesn't help here
- Recursion tree:

\[
\begin{align*}
&\text{FAIL} & &\text{YES} \\
&\begin{array}{c}
\quad u \\
\quad u' \\
\quad v \\
\quad v' \\
\end{array} \\
&k
\end{align*}
\]

- At leaf, when \(k = 0 \):
 - If \(|E| = 0 \) then return \text{YES} else \text{FAIL}
- \(\text{answer = YES} \iff \text{any leaf returns YES} \)

\(\Rightarrow O(2^k V) \) time
- \(O(V) \) for any fixed \(k \)
- Polynomial degree is independent of \(k \)
- Also polynomial for \(k = O(lg n) \)
- Practical for e.g. \(k \approx 32 \)
Fixed-parameter tractability (FPT): a parameterized problem is FPT if it has a (correct) algorithm whose running time is \(\leq f(k) \cdot n^{O(1)} \) for some function \(f : \mathbb{N} \to \mathbb{N} \) independent of \(n \) & \(k \).

Question: Why \(f(k) \cdot n^{O(1)} \), not \(f(k) + n^{O(1)} \)?

Theorem: there's an \(f(k) \cdot n^{O(1)} \)-time algorithm \(\iff \) there's an \(f'(k) + n^{O(1)} \)-time algorithm

Proof:

(\(\Rightarrow \)) trivial (assuming \(f(k) \cdot n^{O(1)} \geq 1 \))

(\(\Leftarrow \)) if \(n \leq f(k) \) then \(f(k) \cdot n^c \leq f(k)^{c+1} \)
if \(f(k) \leq n \) then \(f(k) \cdot n^c \leq n^{c+1} \)

so \(f(k) \cdot n^c \leq \max \{ f(k)^{c+1}, n^{c+1} \} \leq \frac{f(k)^{c+1} + n^{c+1}}{f'(k)} \).

Example: \(O(2^k n) \Rightarrow O(4^k + n^2) \).
Kernelization: a simplifying self-reduction

An $f(k)$-kernelization algorithm converts an input (x, k) into a small, equivalent input (x', k'):
- $\text{answer}(x) = \text{answer}(x')$;
- $|x'| \leq f(k)$;
- $k' \leq k$.

Theorem: every FPT parameterized problem has an (exponential) kernelization.

Proof: given $f(k) \cdot n^c$ algorithm

if $n \leq f(k)$ then already kernelized
if $f(k) \leq n$ then
- run FPT algorithm in n^{c+1} time
- output canonical $O(1)$-size YES or NO input accordingly.

⇒ Fixed-parameter algorithms are all about how small you can reduce the input size using polynomial-time preprocessing.

Current research is in finding small (polynomial or even linear) kernelizations.
Polynomial kernel for vertex cover:

1. remove loops \(\bullet \) & multi-edges \(\bullet \bullet \)
 - any vertex \(v \) of degree \(>k \) must be in \(S \)
 (otherwise we would need \(>k \) vertices in \(S \)
 to cover the edges incident to \(v \))
2. while such a vertex \(v \) exists
 do add \(v \) to \(S \)
 delete \(v \) and its incident edges
 \(k \leftarrow k - 1 \)
 resulting graph has maximum degree \(\leq k \)
3. each further vertex we add to \(S \)
 covers \(\leq k \) edges
4. if \(|E| > k^2 \) then answer is NO:
 return canonical NO instance
 \(\text{else } |E| \leq k^2 \)
5. delete degree-0 vertices
 \(|V| \leq 2k^2 \), \(|V| + |E| \leq 3k^2 \)
 reduced input size to \(O(k^2) \) in \(O(V+E) \) time

Now apply

- trivial solution \(\Rightarrow O((2k^2)^k \times k^2 + V+E) \) time
 \(= O(2^{2k^2 k} + k^2 + 2k + 2k \times k^2 + V+E) \)
- smarter solution \(\Rightarrow O(2^k \times k^2) \) time