Clustering (Gene Expression Data)

Plan
- Gene Expression Data/DNA Microarrays
- Feature selection and Clustering

DNA MicroArrays
- To measure levels of messages in a cell
 - Construct an array with DNA sequences for multiple genes
 - Hybridize each RNA in your sample to a sequence in your array (All sequences from the same gene hybridize to the same spot)
 - Measure the number of hybridizations for each spot

Result
- 6000 genes in one shot
- Entire transcriptome observable in one experiment
- Can perform multiple experiments under varying conditions
 - Time
 - Temperature
 - Sugar level
 - Other chemicals
 - Gene knock-outs
 - ...

Noise
- Sources of Noise
 - Cross-hybridization
 - Non-uniform hybridization kinetics
 - Non-linearity of array response to concentration
 - Non-linear amplification
 - Improper probe sequence
 - Difference in materials/procedures
Expression Value Normalization

- Noise model: \(y_{ij} = n_i \alpha_{ij} (c_j t_{ij}) + \epsilon_{ij} \)
 - \(y_{ij} \): observed level for gene \(j \) on chip \(i \)
 - \(t_{ij} \): true level
 - \(c_j \): gene constant
 - \(n_i \): multiplicative chip normalization
 - \(\alpha_{ij}, \epsilon_{ij} \): multiplicative and additive noise terms

Gene expression data

- For each gene \(j \) we have a vector \(t_j = (t_{ij}, t_{i2}, \ldots, t_{id}) \)
- Now what?
- I.e., what can we do with this data?

The goal

- Group genes into co-regulated sets
 - Observe cells under different environmental changes
 - Find genes whose expression profiles are affected in a similar way
 - These genes are potentially co-regulated, i.e., regulated by the same transcription factor
- Clustering!

Clustering expression levels

- Clustering process:
 1. How to tell if two expression profiles are similar?
 - Define the (dis)-similarity measure between two profiles
 2. How to group multiple profiles into meaningful subsets?
 - Describe the clustering procedure
 3. Are the results meaningful?
 - Evaluate statistical significance of a clustering
- And don’t forget about:
 - De-noising
 - Choice of experiments/features

1. **(Dis)-similarity measures**

 - Distance metrics (between vectors \(x \) and \(y \))
 - "Manhattan" distance: \(MD(x,y) = \sum |x_i - y_i| \)
 - Euclidean distance: \(ED(x,y) = [\sum (x_i - y_i)^2]^{1/2} \)
 - SSE: \(SSE(x,y) = \sum (x_i - y_i)^2 \)
 - Correlation:
 \(C(x,y) = \sum x_i y_i \)
 (possibly take absolute value)

 - Data pre-processing: Instead of clustering on direct observation of expression values...
 - … can cluster based on differential expression from the mean, \(\bar{x}, \bar{y} \):
 \(\sum |x_i - \bar{x} - (y_i - \bar{y})| \)
 - … or differential expression normalized by standard deviation, \(\bar{x}, \bar{y} \):
 \(\sum |(x_i - \bar{x})/\text{stddev}(x) - (y_i - \bar{y})/\text{stddev}(y)| \)

2. **Clustering Algorithms**

 - Hierarchical: Merge data successively to construct tree
 - Non-Hierarchical: place k-means to best explain data
Hierarchical clustering

- **Bottom-up algorithm:**
 - Initialization: each point in a separate cluster
 - At each step:
 - Choose the pair of **closest** clusters
 - Merge
 - The exact behavior of the algorithm depends on how we define the distance $CD(X,Y)$ between clusters X and Y
 - How would you define $CD(X,Y)$?

Distance between clusters

- $CD(X,Y)=\min_{x\in X, y\in Y}D(x,y)$
 - Single-link method
- $CD(X,Y)=\max_{x\in X, y\in Y}D(x,y)$
 - Complete-link method
- $CD(X,Y)=\text{avg}_{x\in X, y\in Y}D(x,y)$
 - Average-link method
- $CD(X,Y)=D(\text{avg}(X),\text{avg}(Y))$
 - Centroid method

Example I

Example II

K-means algorithm

- Each cluster X_i has a center c_i
- Define the clustering cost criterion
 $$\text{COST}(X_1, \ldots, X_k) = \sum_{i=1}^{k} \sum_{x \in X_i} \text{SSE}(x,c_i)$$
- Algorithm tries to find clusters X_1, \ldots, X_k and centers c_1, \ldots, c_k that minimize COST
- K-means algorithm:
 - Initialize centers "somehow"
 - Repeat:
 - Compute best clusters for given centers
 - Attach each point to the closest center
 - Compute best centers for given clusters
 - Choose the centroid of points in a cluster
 - Until the COST is "small"
 - How?

Choosing optimal center

- Consider a cluster X and a center c
 (not necessarily a centroid)
- Want to minimize
 $$\sum_{x \in X} \text{SSE}(x,c) = \sum_{x \in X} (x_i - c)^2$$
- Can optimize each c_i separately:
 $$\sum_{x \in X} (x_i - c_i)^2 = \sum_{x \in X} x_i^2 - 2c_i \sum_{x \in X} x_i + |X|c_i^2$$
- Optimum:
 $$c_i = \sum_{x \in X} x_i / |X|$$
3. Evaluating clustering output

Idea I: Computing statistical significance of clusters

\[
P(\text{pos} \geq r) = \sum_{m \geq r} \binom{p}{m} \binom{n-p}{k-m} \binom{N}{k}
\]

- \(N\) experiments, \(p\) labeled +, \((N-p)\) –
- Cluster: \(k\) elements, \(m\) positive
- \(P\)-value of single cluster containing \(k\) elements out of which \(r\) are same

Idea II: Visualizing clustering output

What we have learned

- Gene expression data
 - Microarray technology
 - De-noising
- Two methods for clustering
 - Hierarchical clustering
 - non-parametric, top-down
 - K-means clustering
 - ‘model’-based
- Evaluating clustering results
- Visualizing clustering output
- Next: running time analysis

Links

- http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/AppletKM.html
- http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/AppletH.html