6.005 Lecture 10: Data Abstraction in Java

Lecture Exercise

Due at start of next lecture (Fri Oct 12)

This exercise gives you more practice with abstract data types. For each of the following ADT representations, write a rep invariant and an abstraction function (as mathematical statements, not as Java code) and illustrate each one with a picture showing some legal rep values, some illegal rep values, and the abstract values that the legal reps map to.

1. **IntSet** represents a set of integers as an array. Example of an abstract value: {5, 200, 393, -2}

   ```java
   public class IntSet {
       private int[] array;
       ...
   }
   ``

2. **DigitSet** represents a subset of the digits 0-9 using a single integer. Example of an abstract value: {0, 3, 8}

   ```java
 public class DigitSet {
 private int n;
 ...
 }
 ``

3. **Uncertain** represents a number with a degree of uncertainty. Example of an abstract value is 0.6 ± 0.1. The desired representation should use the low end and high end of the range (in this case, 0.5 and 0.7), rather than the mean and error spread.

   ```java
   public class Uncertain {
       private double low;
       private double high;
       ...
   }
   ``

4. **Chromosome** represents a double helix of DNA as a pair of strings, one for each strand of DNA. (See http://ghr.nlm.nih.gov/handbook/basics/dna if you don’t recall the basic structural constraints of DNA.)

   ```java
 public class Chromosome {
 private String r;
 private String s;
 ...
 }
   ```