1. For the following exercises on complex numbers, assume \(j = \sqrt{-1} \).

 a. Write simplified expressions for \(jj, jjj, \) and \(jjjj \).

 b. Draw a labeled plot of vector \(z \) where

 \[
 z = 3 + j4
 \]

 and the x-axis and y-axis correspond to the real and imaginary components, respectively. Be sure to include labels for the magnitude and phase (in degrees as opposed to radians) of \(z \).

 c. Calculate the magnitude, \(K \), and phase (in radians), \(\Phi \), of \(z \), where

 \[
 z = Ke^{j\Phi} = 1 + j2 + 2 + j2
 \]

 d. Calculate the real component, \(a \), and imaginary component, \(b \), for

 \[
 a + jb = 2e^{j\pi/2}3e^{j3\pi/6}
 \]

2. For the following exercises on Fourier Series, use only the complex exponential form of the Fourier Series:

 \[
 x(t) = \sum_{n=-\infty}^{\infty} \hat{X}_n e^{j\omega_n t}
 \]

 \[
 \hat{X}_n = \frac{1}{T} \int_{t_0}^{t_0+T} x(t) e^{-j\omega_n t} dt
 \]

 a. Calculate the Fourier Series \(\hat{X}_n \) for

 \[
 x(t) = \cos(\omega t) + 2\sin(3\omega t)
 \]

 b. Calculate the Fourier Series \(\hat{X}_n \) for the periodic waveform shown in Figure 1 below

 i. Express \(\hat{X}_n \) in terms of its real and imaginary components

 \[
 \hat{X}_n = A_n + jB_n
 \]
ii. Express \hat{X}_n in terms of its magnitude and phase components

$$\hat{X}_n = |\hat{X}_n| e^{j\phi_n}$$

iii. Plot the magnitude of \hat{X}_n over the index range of $n = -5$ to $n = 5$ assuming $T_p = T/4$.

3. For the following exercises on the Fourier Transform, assume the Fourier Transform definition given in class:

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df$$

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$$

a. Calculate the Fourier Transform $X(f)$ for the non-periodic waveform shown in Figure 2 below.

i. Express $X(f)$ in terms of its real and imaginary components

$$X(f) = A(f) + jB(f)$$

ii. Express $X(f)$ in terms of its magnitude and phase components

$$X(f) = |X(f)| e^{j\Phi(f)}$$

iii. Plot the magnitude $X(f)$ of over a reasonable frequency range to see its key characteristics.