Lecture 24

- More clustering
- Sublinear time algorithms
- Beyond 6.046
Last time:

\[\text{def } P \subseteq \mathbb{R}^n \text{ is } (K,R)-\text{radius closetable} \]

if there is size \(K \)-subset \(C \subseteq P \)
such that each point in \(P \) is
within distance \(R \) of some element of \(P \).

Fact 1 \((K,R)-\text{r.c.} \) is \(\text{NP-} \) complete
(not shown in class)

Fact 2 \((K,R)-\text{r.c.} \) \(\leq \) Set Cover?

(note, Set Cover? is \(\text{NP-} \) complete
but still, this \(\leq \) does not imply Fact 1
due to the direction of the reduction)

Fact 3 Set Cover + hence \((K,R)-\text{r.c.} \) has an approximation algorithm.

Namely:

- If Input is \((K,R)-\text{r.c.} \) then algorithm
 outputs a \((K \log n, R)-\text{r.c.} \)

What if we need a small number of

Clusters?
Another approximation algorithm for clustering:

New guarantee: If points are \((K, R)\)-radius clusterable

then algorithm outputs a \((K, 2R)\)-radius clustering

(recall that we have assumed points are in \(\mathbb{R}^n\))

Algorithm:

\[
\begin{align*}
& i = 0 \\
& S \leftarrow \text{all points} \\
\text{while } & \text{S is not empty} \\
& \quad i \leftarrow i + 1 \\
& \quad \text{pick an arbitrary point } v \in S \\
& \quad \text{let the new cluster } C_i \text{ be all points within distance } 2R \text{ of } v \\
& \quad S \leftarrow S - C_i \\
\end{align*}
\]

Output \(C_1, \ldots, C_i\)

Runtime: \(O(n^2)\)

Actually - can get a better analysis
Claim After K times thru loop, S will be empty

Corollary \(O(nK) \) runtime
Output satisfies guarantee

Pf of claim

Let \(C^* = \langle C_1^*, ..., C_K^* \rangle \) be a \((k, R)\)-r.c.

with centers \(p_1, ..., p_k \) respectively.

For each \(C_i \),

pick any pair of pts \((u, v) \in C_i^*\)

then \(d(u, v) \leq d(u, p_i) + d(p_i, v) \)

\[\leq 2R \quad \text{(by \(\Delta \))} \]

Once algorithm picks a \(v \in C_i^* \),
it places all other points \(u \) in \(C_i^* \) into the cluster (since \(d(u, v) \leq 2R \))

So at each round, must pick pt from a new \(C_i^* \) cluster \(\Rightarrow \) after \(K \) rounds,
no points are left! \(\square \)
What if number of objects to be clustered is huge?

(ESTIMATES)

World population 6.6 Billion

Number of grams of sand on Earth 7.5×10^{18}

Number of stars in our galaxy $O(10^{11})$

Number of stars $O(10^{21})$

Number of atoms in universe (observable) $O(10^{80})$

And you need a quick answer?

Even linear time algorithms will take a while ...

Could we hope for algorithms running in

Sublinear time?

But such algorithms can view only a small portion of the input, so they can't give a correct answer!
e.g. for clustering—1 point can make it unclusterable!

How can you find that point in sublinear time?

you can't 😞

But you can change your goal!

the idea is to allow some outliers

\[P \text{ is } \varepsilon\text{-close to } (K,R)\text{-r.c. if can delete } \varepsilon |P| \text{ points to make it } (K,R)\text{-r.c. plus } \varepsilon\text{-far from } (K,R)\text{-r.c. otherwise.} \]
Clustering "Property Tester"

Input \(P, k, R, \epsilon \)

Output

- If \(P \) is \((k, R)\) - Rclus. output "Yes"
- If \(P \) is not \((k, 2R)\) - r.c.
- \(\epsilon \)-far from \((k, 2R)\) - r.c.

Output "NO" with probability \(\geq 2/3 \)

Comments

- Output not specified on all inputs! e.g.,
- If not \((k, R)\) - r.c. but is \((k, \frac{3}{2}R)\) - r.c. after deleting 2 points, then OK to output "Yes" or "No"
- (both answers are reasonable...)

- If repeat \(\frac{\epsilon/\ln \frac{1}{\beta}}{\ln \frac{1}{\beta}} \) times, pass only if passes each time

get that: \(P \) if \(P \) \((k, R) \) - r.c. output Yes
- if \(P \) \(\epsilon \)-far from \((k, 2R)\) - r.c. output No
- with probability \(\geq 1 - (1 - \frac{3}{2})^\frac{\epsilon}{\ln \frac{1}{\beta}} \)
 \(\geq 1 - e^{-\ln \frac{1}{\beta}} = 1 - \beta \)

very standard trick
def Xpoint, S is subset \(d(x, s) = \min d(x, y) \)

Algorithm

\[i = 0 \]
\[C \leftarrow \emptyset \]

Do \(k+1 \) times

\[i \leftarrow i + 1 \]

pick sample \(S \) of size \(s = \frac{\ln 2(k+1)}{\varepsilon} \) pts from \(P \)

if there is \(x \in S \) such that \(\text{dist}(x, C) > 2R \)

then \[C \leftarrow C \cup \{x\} \]

If \(|C| > k+1 \) output "No"

else output "Yes" + \(C \)

Runtime \(O\left(\frac{k^2 \ln k}{\varepsilon}\right)\)

Claim Algorithm satisfies property testing requirements

Proof outputs "No" only if finds \(k+1 \) points

with pairwise distance \(\geq 2R \),

which means it cannot be \((k, R)\)-r.c.

equivalently (contrapositive):

if \(P \) is \((k, R)\)-r.c. the algorithm outputs "Yes"
If \(P \) is \(\varepsilon \)-far from \((k, 2R) \)-r.c., then will show algorithm outputs "no" with probability \(\geq \frac{2}{3} \):

Idea: in each of \(k+1 \) iterations, will increase \(C \)
\[\Rightarrow |C| = k+1 \text{ at end} \]

\[\text{def: } x \in P \text{ is a candidate if } d(x, C) > 2R \]

Claim if \(|C| \leq K \), must have \(> \varepsilon \cdot n \) candidates.

Proof assume not.

Remove all candidates.

all other pts are within \(2R \) of some member of \(C \Rightarrow (k^2R^2) \)-r.c.

so \(P \) is \(\varepsilon \)-close to \((k^2R^2) \)-r.c.

\[\Rightarrow (\text{initial assumption}) \]

\[\therefore \Pr[\text{don't find candidate in one iteration}] < (1 - \frac{\varepsilon \cdot n}{n})^2 \]

\[< \frac{1}{e} \ln \frac{3(k^2)}{e} = \frac{1}{3k+1} \]

\[\Rightarrow \Pr[\text{don't find candidate in some iteration}] < \frac{k^2 + \frac{1}{3k+1}}{3k+1} = \frac{1}{3} \]

if this doesn't happen, you output "no"

\[\square \]

Conclusion: If clusterable, can find pretty good clustering in time independent of \(n \).
Lots of approximations can be performed in sublinear time:

properties -
linear
monotone
clusterable
bipartite
high connectivity
3-colorable

approximations -
MST
Number of connected components
diameter of point set
cluster number

Take "Sublinear Algorithms"
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.854</td>
<td>Advanced Algorithms</td>
<td>(fall)</td>
</tr>
<tr>
<td>6.856</td>
<td>Randomized Algorithms</td>
<td>(odd springs)</td>
</tr>
<tr>
<td>6.850</td>
<td>Geometric Computing</td>
<td>"</td>
</tr>
<tr>
<td>6.851</td>
<td>Advanced Data Structures</td>
<td>"</td>
</tr>
<tr>
<td>6.852</td>
<td>Distributed Algorithms</td>
<td>(even springs)</td>
</tr>
<tr>
<td>6.047</td>
<td>Computational Biology</td>
<td>(spring)</td>
</tr>
<tr>
<td>6.581</td>
<td>Algorithms in Systems Biology</td>
<td>(spring)</td>
</tr>
<tr>
<td>6.857</td>
<td>Network & Computer Security</td>
<td>(fall)</td>
</tr>
<tr>
<td>6.896</td>
<td>Sublinear Algorithms</td>
<td>(?)</td>
</tr>
<tr>
<td>6.845</td>
<td>Automata, Computability, Complexity</td>
<td>spring</td>
</tr>
<tr>
<td></td>
<td>Theory of Computation</td>
<td>full</td>
</tr>
<tr>
<td>6.840</td>
<td>Advanced Complexity Theory</td>
<td>alternate springs</td>
</tr>
<tr>
<td>6.841</td>
<td>Randomness & Computation</td>
<td></td>
</tr>
<tr>
<td>6.842</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>