Sequence Alignment and Dynamic Programming

Tue Sept 11, 2007

Challenges in Computational Biology

1	Genome Assembly
2	Gene Finding
3	Regulatory motif discovery
4	Sequence alignment
5	Comparative Genomics
6	Evolutionary Theory
7	Gene expression analysis
8	Database lookup
9	Protein network analysis
10	Cluster similarity
11	Gibbs sampling
12	Emerging network properties

Reminder: Last lecture / recitation

- Schedule for the term
 - 'Foundations' till midterm
 - 'Frontiers' lead to final project
- 'Foundations' till midterm

Today: Comparative genomics is everywhere!

- Problem set 1: dating vertebrate whole-genome duplication
- Problem set 2: discover genes using their conservation properties
- Problem set 3: discover all motifs across entire yeast genome
- Problem set 4: reversing human/mouse genome rearrangements

Evolution preserved functional elements!

How do we actually align two genes?

We can 'read' evolution to reveal functional elements

Today’s goal:

Evolution preserved functional elements!
Comparing Genomes

Genomes change over time

Mutation
Deletion
Insertion

Goal of alignment: Infer edit operations

Question 1: Aligning two (ungapped) strings

Given two possibly related strings S_1 and S_2

What is the longest common substring? (no gaps)

<table>
<thead>
<tr>
<th>S1</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>T</td>
<td>A</td>
<td>G</td>
<td>T</td>
<td>G</td>
<td>T</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

Scoring function:
- Match(x, x) = +1
- Mismatch(A, G) = -½
- Mismatch(C, T) = -½
- Mismatch(x, y) = -1

Scoring:
- A: +1 -½ -1 -1
- G: -½ +1 -1 -1
- T: -1 -1 +1 -½
- C: -1 -1 -½ +1

Q2: Aligning two (possibly gapped) sequences

Given two possibly related strings S_1 and S_2

What is the longest common subsequence? (gaps allowed)

<table>
<thead>
<tr>
<th>S1</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>T</td>
<td>A</td>
<td>G</td>
<td>T</td>
<td>G</td>
<td>T</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

Edit distance:
- Number of changes needed for $S_1 \rightarrow S_2$
- Uniform scoring function

How can we compute best alignment

Given additive scoring function:
- Cost of mutation (AG, CT, other)
- Cost of insertion / deletion
- Reward of match

Need algorithm for inferring best alignment
- Enumeration?
- How would you do it?
- How many alignments are there?
Can we simply enumerate all possible alignments?

- Ways to align two sequences of length \(m, n \)
 \[
 \binom{n + m}{m} = \frac{(m + n)!}{(m!)^2} \approx \frac{2^{m+n}}{\sqrt{\pi \cdot m}}
 \]

- For two sequences of length \(n \)

<table>
<thead>
<tr>
<th>n</th>
<th>Enumeration</th>
<th>Today’s lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>184,756</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>1.40E+11</td>
<td>400</td>
</tr>
<tr>
<td>100</td>
<td>9.00E+58</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Key insight: score is additive!

- For a given aligned pair \((i, j)\), the best alignment is:
 - Best alignment of \(S[1...i]\) and \(S[1...j]\)
 - + Best alignment of \(S[1...n]\) and \(S[1...m]\)

Solution #1 – Memoization

- Create a big dictionary, indexed by aligned seqs
 - When you encounter a new pair of sequences
 - If it is in the dictionary:
 - Look up the solution
 - If it is not in the dictionary:
 - Compute the solution
 - Insert the solution in the dictionary
- Ensures that there is no duplicated work
 - Only need to compute each sub-alignment once!

Solution #2 – Dynamic programming

- Create a big table, indexed by \((i,j)\)
 - Fill it in from the beginning all the way till the end
 - You know that you’ll need every subpart
 - Guaranteed to explore entire search space
- Ensures that there is no duplicated work
 - Only need to compute each sub-alignment once!
 - Very simple computationally!

Key insight: re-use computation

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGTCATCA</td>
<td>TAGTGCA</td>
<td></td>
</tr>
<tr>
<td>TAGTGCA</td>
<td>ACGTCATCA</td>
<td></td>
</tr>
<tr>
<td>ACGTCATCA</td>
<td>TAGTGCA</td>
<td></td>
</tr>
<tr>
<td>TAGTGCA</td>
<td>ACGTCATCA</td>
<td></td>
</tr>
<tr>
<td>ACGTCATCA</td>
<td>TAGTGCA</td>
<td></td>
</tr>
<tr>
<td>ACGTCATCA</td>
<td>TAGTGCA</td>
<td></td>
</tr>
</tbody>
</table>

Identical sub-problems! We can reuse our work!

Solution #2 – Dynamic programming

- Fibonacci numbers
 - 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

A simple introduction to Dynamic Programming

- Fibonacci numbers
 - 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55
Fibonacci numbers are ubiquitous in nature:

- Rabbits per generation
- Leaves per height
- Romanesque spirals
- Nautilus size
- Coneflower spirals
- Leaf ordering

Computing Fibonacci numbers: Top down

- Fibonacci numbers are defined recursively:
  ```python
def fibonacci(n):
    if n==1 or n==2: return 1
    return fibonacci(n-1) + fibonacci(n-2)
  ```
- Goal: Compute n-th Fibonacci number.
 - F(0)=1, F(1)=1, F(n)=F(n-1)+F(n-2)
 - 1,1,2,3,5,8,13,21,34,55,89,144,233,377,…

Analysis:

- T(n) = T(n-1) + T(n-2) = (…) = \(O(2^n)\)

Computing Fibonacci numbers: Bottom up

- Top-down approach
  ```python
def fibonacci(n):
    fib_table[1] = 1
    fib_table[2] = 1
    for i in range(3,n+1):
      fib_table[i] = fib_table[i-1] + fib_table[i-2]
    return fib_table[n]
  ```
- Analysis: T(n) = \(O(n)\)

Lessons from iterative Fibonacci algorithm

- What did the iterative solution do?
 - Reveal identical sub-problems
 - Order computation to enable result reuse
 - Systematically filled-in table of results
 - Expressed larger problems from their subparts

- Ordering of computations matters
 - Naïve top-down approach very slow
 - results of smaller problems not available
 - repeated work
 - Systematic bottom-up approach successful
 - Systematically solve each sub-problem
 - Fill-in table of sub-problem results in order.
 - Look up solutions instead of recomputing

Dynamic Programming in Theory

- Hallmarks of Dynamic Programming
 - Optimal substructure: Optimal solution to problem (instance) contains optimal solutions to sub-problems
 - Overlapping subproblems: Limited number of distinct subproblems, repeated many many times

- Typically for optimization problems (unlike Fib example)
 - Optimal choice made locally: max(subsolution score)
 - Score is typically added through the search space
 - Traceback common, find optimal path from indiv. choices

- Middle of the road in range of difficulty
 - Easier: greedy choice possible at each step
 - DynProg: requires a traceback to find that optimal path
 - Harder: no opt. substr., e.g. subproblem dependencies

Dynamic Programming in Practice

- Setting up dynamic programming
 - Find ‘matrix’ parameterization (# dimensions, variables)
 - Make sure sub-problem space is finite! (not exponential)
 - If not all subproblems are used, better off using memoization
 - If reuse not extensive, perhaps DynProg is not right solution!
 - Traversal order: sub-results ready when you need them
 - Computation order matters! (bottom-up, but not always obvious)
 - Recursion formula: larger problems = F(subparts)
 - Typically F(i) includes min() or max(): remember choices!
 - Systematically fill in table of results, finding optimal score
 - Trace-back from optimal score \(\rightarrow \) optimal solution
How do we apply dynamic programming to sequence alignment?

Key insight: score is additive!

```
S1   ACGTCA T
S2   TAGTGC T
```

• Compute best alignment recursively
 – For a given aligned pair (i, j), the best alignment is:
 • Best alignment of S1[1..i] and S2[1..j]
 • + Best alignment of S1[i+1..n] and S2[j+1..m]

Filling in the dynamic programming matrix

• Local update rules:
 – Compute next alignment based on previous alignment
 – Just like Fibonacci numbers: F[i] = F[i-1] + F[i-2]
 – Table lookup!

0. Setting up the scoring matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initialization:
• Top left: 0

Update Rule:
A(i,j) = max{

Termination:
• Bottom right

Duality: seq. alignment ⇔ path through the matrix

Goal:
Find best path through the matrix

Store score of aligning (i,j) in matrix M(i,j)
1. Allowing gaps in s

Initialization:
- Top left: 0

Update Rule:
\[A(i,j) = \max\{ \]
- \[A(i-1,j) - 2 \]

Termination:
- Bottom right

2. Allowing gaps in t

Initialization:
- Top left: 0

Update Rule:
\[A(i,j) = \max\{ \]
- \[A(i-1,j) - 2 \]
- \[A(i,j-1) - 2 \]
- \[A(i-1,j-1) - 1 \]

Termination:
- Bottom right

3. Allowing mismatches

Initialization:
- Top left: 0

Update Rule:
\[A(i,j) = \max\{ \]
- \[A(i-1,j) - 2 \]
- \[A(i,j-1) - 2 \]
- \[A(i-1,j-1) - 1 \]

Termination:
- Bottom right

4. Choosing optimal paths

Initialization:
- Top left: 0

Update Rule:
\[A(i,j) = \max\{ \]
- \[A(i-1,j) - 2 \]
- \[A(i,j-1) - 2 \]
- \[A(i-1,j-1) - 1 \]

Termination:
- Bottom right

5. Rewarding matches

Initialization:
- Top left: 0

Update Rule:
\[A(i,j) = \max\{ \]
- \[A(i-1,j) - 2 \]
- \[A(i,j-1) - 2 \]
- \[A(i-1,j-1) \pm 1 \]

Termination:
- Bottom right

What is missing?
- We know how to compute the best score (simply the number at the bottom right entry)
- But we need to remember where it came from (pointer to the choice we made at each step)
- Retrace path through the matrix (need to remember all the pointers)

Time needed: \(O(m \times n)\)

Space needed: \(O(m \times n)\)

Can we do better than that?
Bounded Dynamic Programming

Initialization:
\[F(i,0), F(0,j) \text{ undefined for } i, j > k \]

Iteration:
For \(i = 1 \ldots M \)
For \(j = \max(1, i-k) \ldots \min(N, i+k) \)
\[
F(i, j) = \max \begin{cases}
F(i-1, j-1) + s(x_i, y_j) \\
F(i-1, j) - d, & \text{if } j > i - k(N) \\
F(i, j-1) - d, & \text{if } j < i + k(N)
\end{cases}
\]

Termination: same

Summary

- **Dynamic programming**
 - Reuse of computation
 - Order sub-problems. Fill table of sub-problem results
 - Read table instead of repeating work (ex: Fibonacci)
- **Sequence alignment**
 - Edit distance and scoring functions
 - Dynamic programming matrix
 - Matrix traversal path \(\Rightarrow \) Optimal alignment
- **Thursday**
 - Hashing
 - BLAST
 - Linear-time search
- **Recitation**
 - Local and global alignment
 - Algorithmic speed-ups