“Industrial” sketching

Piotr Indyk
MIT
Sketching

• A.k.a. simultaneous communication model
 – Alice and Bob send messages to Referee
 – Referee reports the output

• Almost all streaming algorithms can be used for sketching:
 – L_2, L_0, L_1, L_k norms
 – Heavy hitters/sparse approximations/comp. sensing
 – Geometric MST, matching, etc
 – Core-sets
 – Sparse certificates
Industrial Application I

To be or not to be ...

(... , 1, ..., 4, ..., 2, ..., 2, ...)
(... , 6, ..., 1, ..., 3, ..., 6, ...)
(... , 1, ..., 3, ..., 7, ..., 5, ...)
(... , 2, ..., 2, ..., 1, ..., 1, ...)
Industrial Application II

• Google’s Map-Reduce
 – Data element → (key, value)
 – Aggregate all keys together
 – For each key, compute the “sum” of the values
Today

• Two sketching algorithms:
 – Min-wise hashing [Broder et al, ‘97-’98]
 – Random hyper-plane [Goemans-Williamson’94, Charikar’02]
 – Nice comparison in [Henzinger’07]

• Application to lower bounds
Min-wise hashing

• In many applications, the vectors tend to be quite sparse (high dimension, very few 1’s)
• Easier to think about them as sets
• For two sets \(A, B \), define the Jaccard coefficient:
 \[
 J(A,B) = \frac{|A \cap B|}{|A \cup B|}
 \]
 – If \(A=B \) then \(J(A,B)=1 \)
 – If \(A, B \) disjoint then \(J(A,B)=0 \)
• How to compute short sketches of sets that preserve \(J(.) \) ?
Hashing

• Mapping:
 \[g(A) = \min_{a \in A} h(a) \]
 where \(h \) is a random permutation of the elements in the universe

• Fact: \(\Pr[g(A) = g(B)] = J(A, B) \)

• Proof: Where is \(\min(h(A) \cup h(B)) \) ?
Min Sketching

• Define $Sk(A)=(g_1(A), g_2(A), \ldots, g_t(A))$
• By Chernoff bound, for $t=C \log(1/P)/ [J(A,B) \varepsilon^2]$ we have
 $$1-||Sk(A) - Sk(B)||_0 / t = J(A,B) (1 \pm \varepsilon)$$
 with probability at least $1-P$

• Another application: approximate near neighbor
Random hyperplane

• Let \(u, v \) be unit vectors in \(\mathbb{R}^n \)
• Angular distance:
 \[A(u, v) = \text{angle between } u \text{ and } v \]
• Sketching:
 – Choose a random unit vector \(r \)
 – Define \(s(u) = \text{sign}(u^*r) \)
Probabilities

• What is the probability of \(\text{sign}(u*r) \neq \text{sign}(v*r) \) ?
• It is \(\frac{A(u,v)}{\pi} \)
• Usual Chernoff:
 – Set \(t = C \log(1/P)/[A(u,v) \varepsilon^2] \)
 – Define \(S_k(u) = [s_1(u), \ldots, s_t(u)] \)
 – With prob. \(1-P \) we have
 \[||S_k(u) - S_k(v)||_0 / t = A(u,v) (1 \pm \varepsilon)/\pi \]
Applications to Lower Bounds

• Gap Dot Product Recap
 – (Gap) parameter $\Delta = 1/(m/2)^{1/2}$
 – Alice: a vector $u \in \mathbb{R}^m$, $\|u\|_2 = 1$
 – Bob: a vector $v \in \mathbb{R}^m$, $\|v\|_2 = 1$
 – Goal:
 • If $u^*v = 0$, return 0
 • If $u^*v \geq \Delta$, return 1

• Theorem: the randomized one-round c.c. of GDP is $\Omega(m)$
Angular formulation

• Conditions:
 – If $u^*v=0$ then $A(u,v)=\pi/2$
 – If $u^*v\geq \Delta$ then $A(u,v)<\pi/2-c\Delta$
 (c=c(\Delta)\approx 1$ for small Δ)

• Sketching with $t=O(1/\Delta^2)$
 – If $u^*v=0$ then $||Sk(u)-Sk(v)||_0/t=1/2 \pm \Delta/8$
 – If $u^*v\geq \Delta$ then $||Sk(u)-Sk(v)||_0/t= 1/2-\Delta/\pi \pm \Delta/8$

• Corollary: the randomized one-round c.c. of $(1+\Delta/8)$-approximating the Hamming distance between vectors $x,y\in\{-1,1\}^{O(m)}$ is $\Omega(m)$

• Corollary II: $(1+1/m^{1/2})$-approximating L_0 norm in a stream requires $\Omega(m)$ space
 [Woodruff’04, Jayram-Kumar-Sivakumar ’07]
A bonus “war story”

• Once upon a time (in 1999), we (A+T+P) used min-hashing + LSH to cluster a large set of web pages
 – Documents = sets of words
 – Cluster together pairs of similar documents

• Problem: the home page of T’s advisor got clustered with porn websites

• Problem II: our algorithm was provably correct – the probability of failure was 10^{-6} (we calculated it exactly)
What happened?

• Implementation:
 – Consider a word x
 – We implemented $g(A) = \min_{a \in A} h(a)$ using
 $h(x) = (ax \mod P) \mod 2^8$
 • $P = 2^{64} - 59$ (more or less)
 • a randomly chosen
 – To speed up the process, we kept only words x which were
 divisible by 8

• What happened?
 – Implementation bug: ax was computed modulo 2^{64}
 – $\mod P$ had essentially no effect
 – x divisible by 8 \Rightarrow (ax) divisible by 8 \Rightarrow $(ax) \mod 2^8$ divisible by 8
 – 3 lowest bits of $h(x)$ were zero, so the actual range was 2^5 not 2^8
 – Enough for word collisions to occur…
Moral

• Do your hashing right, or you might never graduate …