Balanced Search Trees

Binary Search Tree review
B-Trees
2-3-4 (or 2-4) Trees
Applications

Dynamic Set Data Structures

<table>
<thead>
<tr>
<th>D.S.</th>
<th>Insert</th>
<th>Delete</th>
<th>Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash Table</td>
<td>$O(1)$ exp</td>
<td>$O(1)$ exp</td>
<td>$O(1)$ exp</td>
</tr>
</tbody>
</table>

Why do we need anything else?

Fast search + find-min?
 - Run heap & hash table in parallel
 - Pointers between corresponding elements in two structures (e.g., to support delete-min)

In exact Searches
 - Library search: Intro to Algorithms
 - Intro to Alkaloids
 - Nearest lexical match
 - Hashing insufficient, sorted array too slow for updates
Binary Search Trees (BSTs)

BST property: All nodes in left subtree of node \(x \) have keys \(\leq \) key at \(x \)
\[... \text{ right } ... \geq \text{ key at } x \]

In order traversal produces sorted array (go left till you can't, backtrack, go right)

Search \((T, k) \)
- Start at root of tree \(T \)
- If \(k \leq \text{ key [current node]} \)
 - then go to left child
- else go to right child
- If hit node with key = \(k \), stop & return node
- If hit nil, stop & return nil.

Running time \(O(h) \): \(h \) is height of tree.
Use similar strategy for insert & delete \(O(h) \)

Problem: \(h \) can be \(O(n) \)! linked list!
Balanced BSTs

Guarantee $O(\log n)$ height by modifying Insert & Delete

Red-Black Trees, AVL trees, treaps use rotations

Right-Rotate

Left-Rotate

Depth (A) reduced
Depth (C) increased

<< tricky, messy, will avoid rotations >>

2-3-4 Trees also called 2-4 Trees

- Relax binary constraint: allow up to 4 children
- Force leaves to be at the same level
 \[\Rightarrow O(\log n) \text{ height} \]
- Nodes with $c \leq 4$ children, store
 $c-1 \leq 3$ keys for search
- Leaves store up to 3 keys
Example

B-Tree Definition

B-tree with parameter \(t \geq 2 \) \((t=2 \Rightarrow 2-3-4\) tree\) must have these properties:

- Every non-leaf node has between \(t \) and \(2t \) children, except root which has between \(2 \) and \(2t \) children.
- Each non-leaf node stores one key in between every adjacent pair of children.
 \[\Rightarrow \text{ # keys } = \text{ # children } - 1 \]
 \[\Rightarrow \text{ # keys } \text{ is in between } t-1 \text{ and } 2t-1 \]
- Require key bound of leaves as well.
- Search tree property
 all keys in subtree \((\text{left})\) of a key are \((\leq) \) that key.
 \[\text{e.g. } \begin{array}{ccc}
 & x & y \\
 A & B & C
 \end{array} \]
 keys \(A \leq x \leq \text{keys} \leq B \leq y \leq \text{keys} \leq C \)
Lemma: \[\text{height of } b\text{-tree } = O(\log_t n) \]
\[= O(\lg n) \]

Proof:
- \# leaves \(\leq n \)
- branching factor \(\geq t \) except at root
- \(\Rightarrow \) height \(\leq \log_t n + 1 \)
- Subtree of root

Search \((T, k)\)
- visit nodes in root-to-leaf path
- at each node:
 - compare all keys to \(k \)
 - if \(k \) found, return
 - else follow pointer between predecessor and successor

Time: \(O(t)/\text{node} \)
\[O(\log_t n) \text{ height} \]
\[\Rightarrow O(t \log_t n) = O(\lg n) \text{ for } t = O(1) \]
B-Tree Insert Example

Insert(16)

Insert(18)

Unchanged on right side

Illegal

Promote median
Insert Example (contd.)

Insert(2)

DONE!
B-tree Insert

- Find leaf where new key belongs (via search)
- Insert new key into leaf: sort ($\Theta(t)$ time)
- If leaf is now overflowing (2t keys)
 - split node into left half, median, right half

\[
\begin{array}{c}
\text{2t} \\
\rightarrow \\
\text{t} \\
\text{t-1}
\end{array}
\]
- promote median up to parent node
 - if parent now overflowing, recursively split
 - if root splits, create new root with 2 children (incrementing total height).

Time: again $\Theta(t \log_t n)$
at worst h splits
B-Tree Delete

- If key not in leaf, replace it with its successor (which is in a leaf)
- Now just have to delete from leaf.

Delete from leaf:

- remove key from leaf
- if leaf not underflowing (still \(\geq t-1 \) keys), done
- else \(\leq 2 \) tricks instead of one:
 1. try to steal from siblings
 - if an adjacent sibling has \(\geq t-1 \) keys then shift through parent
 2. if adjacent siblings have only \(t-1 \) keys (close to underflow), then merge
 with one of them, and parent key

If parent underflows, recurse

Time: some modification per level \(\Rightarrow \Theta(t \log_t n) \).
Applications

B-trees used extensively in databases.
With very large t (in the thousands or more!)

A node fills a disk-block (secondary storage). Disk-access is SLOW!
Operations require reading $O(\log t)$ blocks from disk, which is small for large t.

Operations on the block/node in main memory are fast ($O(t)$) but reading from main memory and checking for keys is very fast in modern processors.)