So, you find a new piece of DNA...

What do you do?

...GTACTACCGGGTTACAGGATTATGGGTTACAGGTAACCGTT...

- Align it to things we know about
- Align it to things we don't know about
- Stare at it
 - Non-standard nucleotide composition?
 - Interesting k-mer frequencies?
 - Recurring patterns?
- Model it
 - Make some hypotheses about it
 - Build a 'generative model' to describe it
 - Find sequences of similar type

This week: Modeling biological sequences
(a.k.a. What to do with a huge chunk of DNA)

- Ability to emit DNA sequences of a certain type
 - Not exact alignment to previously known gene
 - Preserving 'properties' of type, not identical sequence
- Ability to recognize DNA sequences of a certain type (state)
 - What (hidden) state is most likely to have generated observations
 - Find set of states and transitions that generated a long sequence
- Ability to learn distinguishing characteristics of each state
 - Training our generative models on large datasets
 - Learn to classify unlabelled data
Why Probabilistic Sequence Modeling?

- Biological data is noisy
- Probability provides a calculus for manipulating models
- Not limited to yes/no answers – can provide "degrees of belief"
- Many common computational tools based on probabilistic models
 - Our tools:
 - Markov Chains and Hidden Markov Models (HMMs)

Definition: Markov Chain

A Markov chain is a triplet \((Q, p, A)\), where:

- \(Q\) is a finite set of states. Each state corresponds to a symbol in the alphabet \(\Sigma\)
- \(p\) is the initial state probabilities.
- \(A\) is the state transition probabilities, denoted by \(a_{st}\) for each \(s, t\) in \(Q\).

For each \(s, t\) in \(Q\) the transition probability is:

\[a_{st} = P(x_t = t | x_{t-1} = s) \]

Property: The probability of each symbol \(x_t\) depends only on the value of the preceding symbol \(x_{t-1}\):

\[P(x_t | x_{t-1}, \ldots, x_1) = P(x_t | x_{t-1}) \]

Formula: The probability of the sequence:

\[P(x) = P(x_L, x_{L-1}, \ldots, x_1) = P(x_L | x_{L-1}) P(x_{L-1} | x_{L-2}) \ldots P(x_2 | x_1) P(x_1) \]

Output: The output of the model is the set of states at each instant time => the set of states are observable

Definitions: HMM (Hidden Markov Model)

A HMM is a 5-tuple \((Q, V, p, A, E)\), where:

- \(Q\) is a finite set of states, \(|Q| = N\)
- \(V\) is a finite set of observation symbols per state, \(|V| = M\)
- \(p\) is the initial state probabilities.
- \(A\) is the state transition probabilities, denoted by \(a_{st}\) for each \(s, t\) in \(Q\).

For each \(s, t\) in \(Q\) the transition probability is:

\[a_{st} = P(x_t = t | x_{t-1} = s) \]

- \(E\) is a probability emission matrix, \(e_{sk} = P(v_t | q_t = s)\)

Property: Emissions and transitions are dependent on the current state only and not on the past.

The six algorithmic settings for HMMs

<table>
<thead>
<tr>
<th>One path</th>
<th>All paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scoring (x), one path</td>
<td></td>
</tr>
<tr>
<td>(P(x, \pi))</td>
<td>(P(x) = \sum_{\pi} P(x, \pi))</td>
</tr>
<tr>
<td>Prob of a path, emissions</td>
<td></td>
</tr>
<tr>
<td>2. Scoring (x), all paths</td>
<td></td>
</tr>
<tr>
<td>3. Viterbi decoding</td>
<td></td>
</tr>
<tr>
<td>(x^* = \arg\max P(x, \pi))</td>
<td>Most likely path</td>
</tr>
<tr>
<td>4. Posterior decoding</td>
<td></td>
</tr>
<tr>
<td>(x^* = {\pi_i</td>
<td>\pi_i = \arg\max_n \sum_{i} P(x_k</td>
</tr>
<tr>
<td>5. Supervised learning, given (\Lambda)</td>
<td></td>
</tr>
<tr>
<td>(\Lambda^* = \arg\max \max \sum_{\pi} P(x, \pi</td>
<td>\Lambda))</td>
</tr>
<tr>
<td>6. Unsupervised learning</td>
<td></td>
</tr>
<tr>
<td>(\Lambda^* = \arg\max \sum_{\pi} P(x, \pi</td>
<td>\Lambda))</td>
</tr>
<tr>
<td>Viterbi training, best path</td>
<td></td>
</tr>
<tr>
<td>Baum-Welch training, over all paths</td>
<td></td>
</tr>
</tbody>
</table>

Example 1: Finding GC-rich regions

- Promoter regions frequently have higher counts of Gs and Cs
- Model genome as nucleotides drawn independently from two distributions: Background (B) and Promoters (P).
- Emission probabilities based on nucleotide composition in each.
- Transition probabilities based on relative abundance & avg. length

HMM as a Generative Model

\[P(S | \pi) \]

\[P(S | \pi) \]

\[P(S | \pi) \]
Sequence Classification

PROBLEM: Given a sequence, is it a promoter region?
- We can calculate \(P(S | MP) \), but what is a sufficient \(P \) value?

SOLUTION: compare to a null model and calculate log-likelihood ratio
- e.g. background DNA distribution model, \(B \)

\[
\text{Score} = \log \frac{P(S | MP)}{P(S | B)}
\]

Finding GC-rich regions

- Could use the log-likelihood ratio on windows of fixed size
- Downside: have to evaluate all islands of all lengths repeatedly
- Need: a way to easily find transitions
3. DECODING: What was the sequence of hidden states?

Given: Model parameters e_i, a_{ij}
Given: Sequence of emissions x
Find: Sequence of hidden states π

Finding the optimal path

- We can now evaluate any path through hidden states, given the emitted sequences
- How do we find the best path?
- Optimal substructure! Best path through a given state is:
 - Best path to previous state
 - Best transition from previous state to this state
 - Best path to the end state

Viterbi algorithm
- Define $V_i(j) = \text{Probability of the most likely path through state } \pi_i = j$
- Compute $V_i(j+1) = e_i(x_{i+1}) \times \max_j a_{jk} V_j(i)$

$\text{Dynamic Programming}$

Finding the most likely path

- π^* that maximizes total joint probability $P(x, \pi)$
 - $P(x, \pi) = a_0 \prod_i e_i(x_i) \times a_{\pi_i \pi_{i+1}}$

The Viterbi Algorithm

<table>
<thead>
<tr>
<th>State 1</th>
<th>2</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
</tr>
</tbody>
</table>

Input: $x = x_1 \ldots x_N$

Initialization:
$V_0(0) = 1$, $V_i(0) = 0$, for all $k > 0$

Iteration:
$V_i(j) = e_i(x_j) \times \max_k a_{kj} V_{i-1}(k)$

Termination:
$P(x, \pi^*) = \max_k V_N(k)$

Traceback:
Follow max pointers back
Similar to aligning states to seq
In practice:
Use log scores for computation

Running time and space:
Time: $O(KN)$
Space: $O(KN)$

The six algorithmic settings for HMMs

<table>
<thead>
<tr>
<th>One path</th>
<th>All paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scoring x, one path $P(x, \pi)$</td>
<td>2. Scoring x, all paths $P(x) = \sum_\pi P(x, \pi)$</td>
</tr>
<tr>
<td>3. Viterbi decoding $\pi^* = \arg\max_\pi P(x, \pi)$</td>
<td>4. Posterior decoding $\pi^* = { \pi_i</td>
</tr>
</tbody>
</table>

Scoring

Prob of a path, emissions $P(x, \pi)$

Decoding

3. Viterbi decoding $\pi^* = \arg\max_\pi P(x, \pi)$

4. Posterior decoding $\pi^* = \{ \pi_i | \pi_1, \ldots, \pi_N, \arg\max_\pi \sum_\pi P(x | \pi_1) \}$

5. Supervised learning, given π^* $\Lambda^* = \arg\max_\Lambda P(x, \pi | \Lambda)$

6. Unsupervised learning $\Lambda^* = \arg\max_\Lambda \sum_\pi P(x, \pi | \Lambda)$

Learning

5. Supervised learning, given π^*

6. Unsupervised learning

Viterbi training, best path

Baum-Welch training, over all paths
2. EVALUATION
(how well does our model capture the world)
Given: Model parameters e_i, a_{ij}
Given: Sequence of emissions x
Find: $P(x|M)$, summed over all possible paths π

Simple: Given the model, generate some sequence x

- Given a HMM, we can generate a sequence of length n as follows:
 1. Start at state π_1 according to prob a_0.
 2. Emit letter x_1 according to prob $e_{\pi_1}(x_1)$.
 3. Go to state π_2 according to prob $a_{\pi_1\pi_2}$.
 4. ... until emitting x_n.

We have some sequence x that can be emitted by p. Can calculate its likelihood. However, in general, many different paths may emit this same sequence x. How do we find the total probability of generating a given x, over any path?

Complex: Given x, was it generated by the model?

- Given a sequence x,
 - What is the probability that x was generated by the model (using any path)?
 - $P(x) = \sum_\pi P(x, \pi)$
 - Challenge: exponential number of paths

The Forward Algorithm – derivation
Define the forward probability:

\[
f(i) = P(x_1, \ldots, x_i, \pi = l) = \sum_{\pi_1, \ldots, \pi_{i-1}} P(x_1, \ldots, x_i, \pi_1, \ldots, \pi_{i-1}, \pi = l) e_{\pi_i}(x_i)
\]

\[
= \sum_{\pi_1, \ldots, \pi_{i-1}} P(x_1, \ldots, x_i, \pi_1, \ldots, \pi_{i-1}) a_{\pi_{i-1}\pi_i} f(j)
\]

\[
= \sum_{\pi_1, \ldots, \pi_{i-1}} \sum_j f(j) a_{\pi_{i-1}\pi_i} e_{\pi_i}(x_i)
\]

\[
= e_{\pi_i}(x_i) \sum_{\pi_{i-1}} f(j) a_{\pi_{i-1}\pi_i}
\]

Calculate total probability $\Sigma_{x} P(x, \pi)$ recursively

- Assume we know f for the previous time step $i-1$

- Calculate $f(i) = \sum_{\pi} e_{\pi}(x_i) \sum_{\pi_{i-1}} f(i-1) a_{\pi_{i-1}\pi}$

Calculate probability of emission over all paths

- Each path has associated probability
 - Some paths are likely, others unlikely: sum them all up
 - Return total probability that emissions are observed, summed over all paths
 - Viterbi path is the most likely one
 - How much ‘probability mass’ does it contain?
- (cheap) alternative:
 - Calculate probability over maximum (Viterbi) path π^*
 - Good approximation if Viterbi has highest density
 - BUT: incorrect
- (real) solution
 - Calculate the exact sum iteratively
 - $P(x) = \sum_\pi P(x, \pi)$
 - Can use dynamic programming
The Forward Algorithm

Input: $x = x_1 \ldots x_N$

Initialization:
- $f_0(0) = 1$, $f_k(0) = 0$, for all $k > 0$

Iteration:
- $f_k(i) = e_k(x_i) \sum_j a_{jk} f_{k-1}(i-1)$

Termination:
- $P(x, \pi^*) = \sum_k f_k(N)$

In practice:
- Sum of log scores is difficult
 - approximate $\exp(1+p+q)$
- Scaling of probabilities

Running time and space:
- Time: $O(K^2N)$
- Space: $O(KN)$

The six algorithmic settings for HMMs

<table>
<thead>
<tr>
<th>One path</th>
<th>All paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoring</td>
<td>Prob of a path, emissions</td>
</tr>
<tr>
<td>$P(x, \pi)$</td>
<td>$P(x) = \sum_{\pi} P(x, \pi)$</td>
</tr>
<tr>
<td>Viterbi decoding</td>
<td>Most likely path</td>
</tr>
<tr>
<td>$x^* = \arg\max \ P(x, \pi)$</td>
<td>Path containing the most likely state at any time point</td>
</tr>
<tr>
<td>Posterior decoding</td>
<td>Unsupervised learning</td>
</tr>
<tr>
<td>$\pi^* = { \pi_i</td>
<td>\pi_i = \arg\max_k \sum_{\pi} P(\pi_i=k</td>
</tr>
</tbody>
</table>

Introducing memory
- State, emissions, only depend on current state
- How do you count di-nucleotide frequencies?
 - CpG islands
 - Codon triplets
 - Di-codon frequencies
- Introducing memory to the system
 - Expanding the number of states

Example 2: CpG islands: incorporating memory

- **Markov Chain**
 - Q: states
 - p: initial state probabilities
 - A: transition probabilities
- **HMM**
 - Q: states
 - V: observations
 - p: initial state probabilities
 - A: transition probabilities
 - E: emission probabilities

Counting nucleotide transitions: Markov/HMM
- **Markov Chain**
 - Q: states
 - p: initial state probabilities
 - A: transition probabilities
- **HMM**
 - Q: states
 - V: observations
 - p: initial state probabilities
 - A: transition probabilities
 - E: emission probabilities

What have we learned?
- Modeling sequential data
 - Recognize a type of sequence, genomic, oral, verbal, visual, etc…
- Definitions
 - Markov Chains
 - Hidden Markov Models (HMMs)
- Simple examples
 - Recognizing GC-rich regions.
 - Recognizing CpG dinucleotides
- Our first computations
 - Running the model: know model \Rightarrow generate sequence of a 'type'
 - Evaluation: know model, emissions, states \Rightarrow p?
 - Viterbi: know model, emissions \Rightarrow find optimal path
- Next time:
 - Posterior decoding
 - Supervised learning
 - Unsupervised learning: Baum-Welch, Viterbi training