6.837 Introduction to Computer Graphics

Curves and Surfaces
Cubic Bezier splines

- \[P(t) = (1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t) P_3 + t^3 P_4 \]
Bernstein polynomials

For cubic:
- \(B_1(t) = (1-t)^3 \)
- \(B_2(t) = 3t(1-t)^2 \)
- \(B_3(t) = 3t^2(1-t) \)
- \(B_4(t) = t^3 \)

- (careful with indices, many authors start at 0)

- But defined for any degree
General spline formulation

\[Q(t) = GBT(t) = \text{Geometry } G \cdot \text{Spline Basis } B \cdot \text{Power Basis } T(t) \]

- Geometry: control points coordinates assembled into a matrix \((P_1, P_2, \ldots, P_{n+1})\)
- Power basis: the monomials \(T(t^n, t^{n-1}, \ldots t^2, t, 1)\)
- Bezier:

\[
P(t) = \begin{pmatrix}
P_1,x & P_2,x & P_3,x & P_4,x \\
P_1,y & P_2,y & P_3,y & P_4,y
\end{pmatrix} \begin{pmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
t^3 \\
t^2 \\
t \\
1
\end{pmatrix}
\]
General spline formulation

\[Q(t) = GBT(t) = \text{Geometry } G \cdot \text{Spline Basis } B \cdot \text{Power Basis } T(t) \]

- Geometry: control points coordinates assembled into a matrix \((P_1, P_2, \ldots, P_{n+1})\)
- Spline basis: defines the type of spline
 - Bernstein for Bezier
- Power basis: the monomials \(T(t^n, t^{n-1}, \ldots t^2, t, 1)\)
- Advantage of general formulation
 - Compact expression
 - Easy to convert between types of splines
Cubic BSplines: basis

\[Q(t) = \frac{(1-t)^3}{6} P_{i-3} + \frac{3t^3 - 6t^2 + 4}{6} P_{i-2} + \frac{-3t^3 + 3t^2 + 3t + 1}{6} P_{i-1} + \frac{t^3}{6} P_i \]

\[Q(t) = \text{GBT}(t) \]

\[B_{B-Spline} = \frac{1}{6} \begin{pmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 0 & 4 \\
-3 & 3 & 3 & 1 \\
1 & 0 & 0 & 0
\end{pmatrix} \]
Bézier is not the same as BSpline

• Relationship to the control points is different
Converting between Bézier & BSpline

original control points as Bézier

new BSpline control points to match Bézier

new Bézier control points to match BSpline

original control points as BSpline
Converting between Bézier & BSpline

• Using the basis functions:

\[B_{\text{Bezier}} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \]

\[B_{\text{BSpline}} = \frac{1}{6} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 0 & 4 \\ -3 & 3 & 3 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \]

\[Q(t) = GBT(t) = \text{Geometry } G \cdot \text{Spline Basis } B \cdot \text{Power Basis } T(t) \]
Questions?
Representing surfaces

- Triangle meshes
 - 3D version of polylines
- Tensor Splines
 - 3D version of splines
- Subdivision surfaces
- Implicit surfaces
 - \(f(x,y,z)=0 \)
- Procedural
 - e.g. surfaces of revolution, generalized cylinder
- From volume data (medical images, etc.)
Conversion

• Often need to convert
 – Modeling is often easier with higher-level primitives (e.g. splines, surfaces of revolution)
 – rendering likes triangles

• Tessellation is the act of turning a smooth surface into facets.
Triangle meshes

- What you’ve used so far in Asst 0
- Triangle represented by 3 vertices (3 triplets of coordinates)
- Can be grouped in indexed face sets where vertices are shared
 - First list of triplet of coordinates for vertices
 - Then list of tuples of indices for facets
- Pro: simple, can be rendered directly
- Cons: not smooth, needs many triangles to approximate smooth surfaces
Questions?
Tensor spline patches

- Parametric surface $P(u,v)$ is a cubic polynomial of two variables u & v
- Defined by $4 \times 4 = 16$ control points $P_{1,1}$, $P_{1,2}$,..., $P_{4,4}$
- Interpolates 4 corners, approximates others
Tensor spline patches

- Defined by $4 \times 4 = 16$ control points $P_{1,1}, P_{1,2}, ..., P_{4,4}$
- Basis are product of two Bernstein polynomials: $B_1(u)B_1(v); B_1(u)B_2(v); ... B_4(u)B_4(v)$
Tensor spline patches

• Pros:
 – Smooth
 – Defined by reasonably small set of points (knots)

• Cons
 – Harder to render (usually converted to triangles)
 – Tricky to ensure continuity at patch boundary

• Extensions
 – Rational splines: splines in homogeneous coordinates
 – NURBS: Non-Uniform Rational B-Splines
 • More crazy formula (ratio of polynomials, non-uniform location of control points)
Utah teapot: tensor Bezier splines

• Designed by Martin Newell
Questions?
Subdivision surfaces

- Start with polygonal mesh
- Subdivide into larger number of polygons & smooth
- The limit surface is smooth
Illustration: subdivision curve
Corner Cutting

A control point

The limit curve

The control polygon

Overview

Slide by Adi Levin
Subdivision curves and surfaces

- Idea: cut corners to smooth
- Add points and compute weighted average of neighbors
- Same for surfaces
 - Special case for irregular vertices
 - vertex with more or less than 6 neighbors in a triangle mesh
Subdivision curves and surfaces

• Advantages
 – Arbitrary topology
 – Smooth at boundaries
 – Level of detail, scalable
 – Simple representation
 – Numerical stability, well-behaved meshes
 – Code simplicity

• Little disadvantage:
 – Procedural definition
 – Not parametric, not implicit
 – Tricky at special vertices

Warren et al.
Questions?
Implicit surfaces

- Implicit definition: \(f(x,y,z) = 0 \)
 e.g. for a sphere: \(x^2 + y^2 + z^2 = R^2 \)
- Often defined as metaballs with seed points
- \(f(x,y,z) = f_1(x,y,z) + f_2(x,y,z) + \ldots \)
 – where \(f_i \) depends on distance to a seed point \(P_i \)

![Diagram of metaballs with seed points](image)
Interpretation

- Isosurface of a higher-dimensional function
Implicit surfaces

• Pros:
 – Can handle weird topology for animation
 – Easy to do sketchy modeling
 – Some data comes this way (medical & scientific data)

• Cons:
 – Does not allow us to easily generate a point on the surface
Questions?
Specialized Procedural Definitions

- **Surfaces of revolution**
 - Given 2D profile

- **Generalized cylinders**
 - Given 2D profile and 3D curve
Surface of revolution

- 2D curve $q(u)$ provides one dimension
 - Note: works also with 3D curve
- Rotation $R(v)$ provides 2nd dimension

$s(u,v) = R(v)q(u)$

where R is a matrix, q a vector, and s is a point on the surface.
General Sweep Surfaces

- Trace out surface by moving a profile curve along a trajectory.
 - profile curve $q(u)$ provides one dimension
 - trajectory $c(u)$ provides the other
- Surface of revolution can be seen as a special case where trajectory is a circle

$$s(u,v) = M(c(v))q(u)$$

where M is a matrix that depends on the trajectory c
General Sweep Surfaces

- How do we get M?
 - Location is easy, given by $c(v)$
 - What about orientation?

- Orientation options:
 - Align profile curve with an axis.
 - Align profile curve with frame that “follows” the curve

$$s(u,v) = M(c(v))q(u)$$

where M is a matrix that depends on the trajectory c
Questions
Differential properties of curves

• Motivation
 – Define orientation for swept surfaces
 – Compute velocity for animation
 – Compute normal for surfaces
 – Analyze smoothness
Velocity

- First derivative wrt t
- Can you compute this for Bezier curves?

\[P(t) = (1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t) P_3 + t^3 P_4 \]

\[P'(t) = -3(1-t)^2 P_1 + [3(1-t)^2 - 6t(1-t)] P_2 + [6t(1-t) - 3t^2] P_3 + 3t^2 P_4 \]

Sanity check: $t=0$; $t=1$
The tangent to the curve $P(t)$ can be defined as $T(t) = \frac{P'(t)}{||P'(t)||}$
- normalized velocity

This provides us with one orientation for swept surfaces
Questions?
Curvature

• Derivative of tangent
 – $K(t) = T'(t)$
 – Constant for a circle
 – Zero for a straight line

• Always orthogonal to tangent
 – Because tangent is unit-length
Normal

• Normalized curvature: $\frac{T'(t)}{||T'(t)||}$
Frenet frame

• Recall high-school physics?
• Frame defined by 1st (tangent), 2nd (curvature) and 3rd (torsion) derivatives of a 3D curve
• Looks like a good idea for swept surfaces...
Problem at inflection

- Normal flips!
- Bad to define a smooth swept surface
Questions?
Constructing smooth frames

- Tangent is assumed reliable
- Build triplet of vectors
 - include tangent
 - orthonormal
 - coherent over the curve
- Idea:
 - use cross product to create orthogonal vectors
 - exploit discretization of curve
 - use previous frame to bootstrap orientation
Problem

- We seek N_i, B_i, T_i basis vectors for frame i
- We know them for the previous frame $i-1$
- We know T_i
Algorithm

• “Pretend” \(B_i \) is the same as \(B_{i-1} \)
 – This will ensure continuity
 – Note, though, that \(B_{i-1} \) is usually not orthogonal to \(T_i \)

• Then we know \(T_i \) and “\(B_i \)”, we can deduce \(N_i \):
 – \(N_i = \text{normalize}(B_{i-1} \times T_i) \)

• Now we need to fix “\(B_i \)”:
 just use \(N_i \) and \(T_i \)
 – \(B_i = \text{normalize}(T_i \times N_i) \)

Sanity check?
Standard graphics trick

- When you need to get an orthonormal frame
- Start with some reasonable guess
- Do enough cross products/normalizations to make sure everything is orthonormal.
Other use of the trick

• When defining a camera
 – provide viewing direction
 – Need to define up vector

• Very tedious to provide up vector orthogonal to viewing direction
 – usually provide it approximately, then do cross products
Questions?