Real-Time Shadows

“Now this is... this is... well, I guess it’s another snake.”
Questions?
Today

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Projective Texture Shadows
• Shadow Maps
• Shadow Volumes
Why are Shadows Important?

• Depth cue
• Scene Lighting
• Realism
• Contact points
Shadows as a Depth Cue
For Intuition about Scene Lighting

- Position of the light (e.g. sundial)
- Hard shadows vs. soft shadows
- Colored lights
- Directional light vs. point light
Shadows as the Origin of Painting
Shadows and Art

- Only in Western pictures (here Caravaggio)
Today

- Why are Shadows Important?
- Shadows & Soft Shadows in Ray Tracing
- Planar Shadows
- Projective Texture Shadows
- Shadow Maps
- Shadow Volumes
Shadows

• One shadow ray per intersection per point light source
Today

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Projective Texture Shadows
• Shadow Maps
• Shadow Volumes
Shadow Maps

- In Renderman
 - (High-end production software)
- In real-time rendering (e.g. games)
Shadow/View Duality

• A point is lit if it is visible from the light source

• Shadow computation similar to view computation
Shadow Mapping

- Texture mapping with depth information
- Requires 2 passes through the pipeline:
 - Compute shadow map (depth from light source)
 - Render final image, check shadow map to see if points are in shadow

MIT EECS 6.837, Durand
Shadow Map Look Up

- We have a 3D point \((x, y, z)_{WS}\)
- How do we look up the depth from the shadow map?
- Use the 4x4 perspective projection matrix from the light source to get \((x', y', z')_{LS}\)
- ShadowMap\((x', y') < z'\)?

MIT EECS 6.837, Durand
Questions?

Plate 52 Grandville, *The Shadows (The French Cabinet)* from *La Caricature*, 1830.

MIT EECS 6.837, Durand
Limitations of Shadow Maps

1. Field of View
2. Bias (Epsilon)
3. Aliasing
1. Field of View Problem

- What if point to shadow is outside field of view of shadow map?
 - Use cubical shadow map
 - Use only spot lights!
2. The Bias (Epsilon) Nightmare

- For a point visible from the light source
 \[\text{ShadowMap}(x', y') \approx z' \]

- How can we avoid erroneous self-shadowing?
 - Add bias (epsilon)
2. Bias (Epsilon) for Shadow Maps

\[\text{ShadowMap}(x', y') + \text{bias} < z' \]

Choosing a good bias value can be very tricky.

Correct image

Not enough bias

Way too much bias

MIT EECS 6.837, Durand
3. Shadow Map Aliasing

- Under-sampling of the shadow map
- Reprojection aliasing – especially bad when the camera & light are opposite each other
3. Shadow Map Filtering

- Should we filter the depth? (weighted average of neighboring depth values)
- No... filtering depth is not meaningful

a) Ordinary texture map filtering. Does not work for depth maps.
3. Percentage Closer Filtering

- Instead filter the result of the test (weighted average of comparison results)
- But makes the bias issue more tricky

![Sample Transform Step](image)

Surface at \(z = 49.8 \)

\begin{array}{ccc}
50.2 & 50.0 & 50.0 \\
50.1 & 1.2 & 1.1 \\
1.3 & 1.4 & 1.2 \\
\end{array}

\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}

<49.8? compare

\text{filter} \rightarrow .55
3. Percentage Closer Filtering

- 5x5 samples
- Nice antialiased shadow
- Using a bigger filter produces fake soft shadows
- Setting bias is tricky
Questions?

Plate 50 Samuel van Hoogstraten, *Shadow Theatre*. From *Inleyding tot de hooghe schoole der schilderkonst* 1678.
Shadows in Production

- Often use shadow maps
- Ray casting as fallback in case of robustness issues

Figure 12. Frame from *Luxo Jr.*

Figure 13. Shadow maps from *Luxo Jr.*
Hardware Shadow Maps

• Can be done with hardware texture mapping
 – Texture coordinates u, v, w generated using 4x4 matrix
 – Modern hardware permits tests on texture values
Questions?
Today

• Why are Shadows Important?
• Shadows & Soft Shadows in Ray Tracing
• Planar Shadows
• Projective Texture Shadows
• Shadow Maps
• Shadow Volumes
 – The Stencil Buffer
Shadow Volumes

• Explicitly represent the volume of space in shadow

• For each polygon
 – Pyramid with point light as apex
 – Include polygon to cap

• Shadow test similar to clipping
Shadow Volumes

• If a point is inside a shadow volume cast by a particular light, the point does not receive any illumination from that light.

• Cost of naive implementation:
 \#polygons \times \#lights
Shadow Volumes

- Shoot a ray from the eye to the visible point
- Increment/decrement a counter each time we intersect a shadow volume polygon (check z buffer)
- If the counter $\neq 0$, the point is in shadow
Stencil Buffer

- Tag pixels in one rendering pass to control their update in subsequent rendering passes
 - "For all pixels in the frame buffer" → "For all tagged pixels in the frame buffer"
- Can specify different rendering operations for each case:
 - stencil test fails
 - stencil test passes & depth test fails
 - stencil test passes & depth test passes
Stencil Buffer – Real-time Mirror

- Clear frame, depth & stencil buffers
- Draw all non-mirror geometry to frame & depth buffers
- Draw mirror to stencil buffer, where depth buffer passes
- Set depth to infinity, where stencil buffer passes
- Draw reflected geometry to frame & depth buffer, where stencil buffer passes

See NVIDIA's stencil buffer tutorial
http://developer.nvidia.com

also discusses blending, multiple mirrors, objects behind mirror, etc…
Shadow Volumes w/ the Stencil Buffer

Initialize stencil buffer to 0
Draw scene with ambient light only
Turn off frame buffer & z-buffer updates
Draw front-facing shadow polygons
 If z-pass → increment counter
Draw back-facing shadow polygons
 If z-pass → decrement counter
Turn on frame buffer updates
Turn on lighting and
redraw pixels with
counter = 0
If the Eye is in Shadow...

- ... then a counter of 0 does not necessarily mean lit

- 3 Possible Solutions:
 1. Explicitly test eye point with respect to all shadow volumes
 2. Clip the shadow volumes to the view frustum
 3. "Z-Fail" shadow volumes
1. Test Eye with Respect to Volumes

- Adjust initial counter value

Expensive
2. Clip the Shadow Volumes

- Clip the shadow volumes to the view frustum and include these new polygons
- *Messy CSG*
3. "Z-Fail" Shadow Volumes

Start at infinity

...

Draw front-facing shadow polygons
 If z-fail, decrement counter

Draw back-facing shadow polygons
 If z-fail, increment counter
3. "Z-Fail" Shadow Volumes

- Introduces problems with far clipping plane
- Solved by clamping the depth during clipping
Optimizing Shadow Volumes

- Use silhouette edges only (edge where a back-facing & front-facing polygon meet)
Limitations of Shadow Volumes

- Introduces a lot of new geometry
- Expensive to rasterize long skinny triangles
- Limited precision of stencil buffer (counters)
 - for a really complex scene/object, the counter can overflow
- Objects must be watertight to use silhouette trick
- Rasterization of polygons sharing an edge must not overlap & must not have gap
Questions?

- From some years ago’s quiz: Check the boxes to indicate the features & limitations of each technique

<table>
<thead>
<tr>
<th>Features / Limitations</th>
<th>Planar Fake Shadows</th>
<th>Projective Texture Shadows</th>
<th>Shadow Maps</th>
<th>Shadow Volumes</th>
<th>Ray Casting Shadows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allows objects to cast shadows on themselves (self shadowing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permits shadows on arbitrary surfaces (i.e. curved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renders geometry from the viewpoint of the light</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generates extra geometric primitives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited resolution of intermediate representation can result in jaggie shadow artifacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>