Introduction to Modeling

6.872/HST950

Why build Models?

- To predict (identify) something
- Diagnosis
- Best therapy
- Prognosis
- Cost
- To understand something
 - Structure of model may correspond to structure of reality

Where do models come from?

- Pure induction from data
- Even so, need some “space” of models to explore
- Maximum A-posteriori Probability (MAP)
 \[P(h_i|d) = \alpha P(d|h_i)P(h_i) \]
- Maximum Likelihood (ML)
 \[P(h_i|d) = \alpha P(d|h_i) \]
- Assumes uniform priors over all hypotheses in the space
- A-priori knowledge, expressed in
 - Structure of the space of models
 - \(P(h_i) \)
 - Adjustments to observed data

An Example

(Russell & Norvig)

- Surprise Candy Corp. makes two flavors of candy: cherry and lime
- Both flavors come in the same opaque wrapper
- Candy is sold in large bags, which have one of the following distributions of flavors, but are visually indistinguishable:
 - \(h_1 \): 100% cherry
 - \(h_2 \): 75% cherry, 25% lime
 - \(h_3 \): 50% cherry, 50% lime
 - \(h_4 \): 25% cherry, 75% lime
 - \(h_5 \): 100% lime
- Relative prevalence of these types of bags is (.1, .2, .4, .2, .1)
- As we eat our way through a bag of candy, predict the flavor of the next piece; actually a probability distribution.
Bayesian Learning

- Calculate the probability of each hypothesis given the data
 \[P(h_i | d) = \alpha P(d | h_i) P(h_i) \]
- To predict the probability distribution over an unknown quantity, \(X \),
 \[P(X | d) = \sum_i P(X | d, h_i) P(h_i | d) = \sum_i P(X | h_i) P(h_i | d) \]
- If the observations \(d \) are independent, then
 \[P(d | h_i) = \prod_i P(d_i | h_i) \]
- E.g., suppose the first 10 candies we taste are all lime
 \[P(d | h_5) = 0.5^{10} \approx 0.001 \]

Learning Hypotheses
and Predicting from Them

- (a) probabilities of \(h \) after \(k \) lime candies; (b) prob. of next lime

- MAP prediction: predict just from most probable hypothesis
 - After 3 limes, \(h_5 \) is most probable, hence we predict lime
 - Even though, by (b), it’s only 80% probable

Observations

- Bayesian approach asks for prior probabilities on hypotheses!
- Natural way to encode bias against complex hypotheses: make their prior probability very low
- Choosing \(h_{MAP} \) to maximize
 \[P(h_i | d) = \alpha P(d | h_i) P(h_i) \]
 is equivalent to minimizing
 \[-\log P(d | h_i) - \log P(h_i) \]
- but as we know that entropy is a measure of information,
 these two terms are
 - # of bits needed to describe the data given hypothesis
 - # bits needed to specify the hypothesis
- Thus, MAP learning chooses the hypothesis that maximizes compression of the data; Minimum Description Length principle
- Assuming uniform priors on hypotheses makes MAP yield \(h_{ML} \), the maximum likelihood hypothesis, which maximizes \(P(h_i | d) = \alpha P(d | h_i) \)

Learning More Complex Hypotheses

- Input:
 - Set of cases, each of which includes
 - numerous features: categorical labels, ordinals, continuous
 - these correspond to the independent variables
- Output:
 - For each case, a result, prediction, classification, etc., corresponding to the dependent variable
 - In regression problems, a continuous output
 - a designated feature the model tries to predict
 - In classification problems, a discrete output
 - the category to which the case is assigned
- Task: learn function \(f(\text{input}) = \text{output} \)
 - that minimizes some measure of error
Linear Regression

• General form of the function
 \[y = f(x_1, x_2, \ldots, x_n) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n \]

• For each case:
 \[\hat{y}_i = f(x_{1,i}, x_{2,i}, \ldots, x_{n,i}) = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \cdots + \beta_n x_{n,i} \]

• Find \(\beta_i \) to minimize some function of \((y_i - \hat{y}_i) \) over all \(y_i \)
 - e.g., mean squared error: \(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \)

Logistic Regression

• Logistic function:
 \[f(x) = \frac{1}{1 + e^{-x}} \]

 \[y_i = f(z_i) \]
 \[z_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \cdots + \beta_n x_{n,i} \]

• E.g., how risk factors contribute to probability of death
 - \(\beta_i \) are the log odds ratios \(\log O(y_i|x_i) \)

More sophisticated models

• Nearest Neighbor Methods
• Classification Trees
• Artificial Neural Nets
• Support Vector Machines
• Bayes Networks (much on this, later)
• Rough Sets, Fuzzy Sets, etc. (see 6.873/HST951 or other ML classes)

How?

• Given: pile of training data, all cases labeled with gold standard outcome
• Learn “best” model
• Gather new test data, also all labeled with outcomes
• Test performance of model on new test data
• Simple, no?
Simplest Example

- Relationship between a diagnostic conclusion and a diagnostic test

<table>
<thead>
<tr>
<th></th>
<th>Test Positive</th>
<th>Test Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Present</td>
<td>True Positive</td>
<td>False Negative</td>
</tr>
<tr>
<td>Disease Absent</td>
<td>False Positive</td>
<td>True Negative</td>
</tr>
<tr>
<td></td>
<td>TP+FP</td>
<td>FN+TN</td>
</tr>
</tbody>
</table>

Definitions

- **Sensitivity** (true positive rate): $\frac{TP}{TP+FN}$
- **False negative rate**: $1 - \text{Sensitivity} = \frac{FN}{TP+FN}$
- **Specificity** (true negative rate): $\frac{TN}{FP+TN}$
- **False positive rate**: $1 - \text{Specificity} = \frac{FP}{FP+TN}$
- **Positive Predictive Value (PPV)**: $\frac{TP}{TP+FP}$
- **Negative Predictive Value (NPV)**: $\frac{TN}{FN+TN}$

Test Thresholds

Wonderful Test
Test Thresholds Change Trade-off between Sensitivity and Specificity

Receiver Operator Characteristic (ROC) Curve

What makes a better test?

Need to explore many models

- Remember:
 - training set => model
 - model + test set => measure of performance
- But
 - How do we choose the best family of models?
 - How do we choose the important features?
 - Models may have structural parameters
 - Number of hidden units in ANN
 - Max number of parents in Bayes Net
 - Parameters (like the betas in LR), and meta-parameters
- Not legitimate to “try all” and report the best !!!!!!!!!!!!!!!!!!!!
The Lady Tasting Tea

- R. A. Fisher & the lady
 - B. Muriel Bristol claimed she prefers tea added to milk rather than milk added to tea
 - Fisher was skeptical that she could distinguish
- Possible resolutions
 - Reason about the chemistry of tea and milk
 - Milk first: a little tea interacts with a lot of milk
 - Tea first: vice versa
 - Perform a "clinical trial"
 - Ask her to determine order for a series of cups
 - Calculate probability that her answers could have occurred by chance; if small, she "wins"
 - … Fisher’s Exact Test
- Significance test
 - Reject the null hypothesis (that it happened by chance) if its probability is less than 0.10, 0.05, 0.01, 0.001, …?

How to deal with multiple testing

- Suppose Ms. Bristol had tried this test 100 times, and passed once. Would you be convinced of her ability to distinguish?
- Bonferroni correction: for n trials, insist on a p-value that is 1/n of what you would demand for a single trial

Cross-validation

- Any number of times
 - Train on some subset of the training data
 - Test on the remainder, called the validation set
 - Choose best meta-parameters
 - Train, with those meta-parameters, on all training data
 - Test on Test data, once!

Aliferis lessons (part)

- Overfitting
 - bias, variance, noise
 - O = optimal possible model over all possible learners
 - L = best model learnable by this learner
 - A = actual model learned
 - Bias = O - L (limitation of learning method or target model)
 - Variance = L - A (error due to sampling of training cases)
 - Compare against learning from randomly permuted data
- Curse of dimensionality
 - Feature selection
 - Dimensionality reduction
Causality

- Suppes, 1950's
 - Statistical association
 - Temporal succession
 - No confounders (!)
 - hidden variables
- A node, X, is conditionally independent of all other nodes in the network given its Markov blanket: its parents, U, children, Y, and children's parents, Z.

![Causality Diagram](image-url)