Basic elements

State machine consists of:
-- set of states S
-- initial state $I \in S$
-- set of event classes E
-- transition relation $R \subseteq S \times E \times S$

Semantics of state machine is:
-- 'alphabet' of event classes E
-- set of traces $T \subseteq E^*$ defined like this:
 -- the empty sequence is a trace
 $<> \in T$ leading to the initial state
 -- if trace t can lead to state s, and
 $(s,e,s') \in R$, then $t^<e> \in T$ is a
 trace that can lead to state s'

I/O shorthand

Parallel combination:
-- given machines (E_1,T_1) and (E_2,T_2)
-- a sequence t in $(E_1 \cup E_2)^*$ is a trace
 of the combined machine if
 t restricted to the events in E_1 (E_2)
 is in T_1 (T_2)

Defining a state machine

Definition should include:
-- state machine diagram
-- designations of events

Sample designation:
offhook: user hangs up phone
by pressing END button