Today: Amortization

- aggregate method
- accounting method
- charging method
- potential method

\{ different approaches/techniques for amortized analysis — all related, but one often easier than others \}

- table doubling
- binary counter
- (a,b)-trees

\{ examples of amortized analysis \}

Recall: table doubling
- want hash table to have \(m = \Omega(n) \) slots for \(1 + \frac{m}{n} = O(1) \) expected performance (with hashing without chaining)
- idea: if \(n \) grows \(\geq m \), double \(m \)
- cost: \(\Theta(m+n) = \Theta(n) \) to build new table
\[\Rightarrow \Theta(2^0 + 2^1 + 2^2 + 2^3 + \ldots + 2^{\log n}) = \Theta(n) \]
- total to resize table over \(n \) insertions
\[\Rightarrow \Theta(1) \text{ amortized cost per insertion} \]
Aggregate method: “just add it up”
- compute total cost of \(k \) operations
- divide by \(k \)
 \(\Rightarrow \) amortized cost per operation
- common only for simple analyses

Amortized bounds:
- operation has amortized cost \(T(n) \)
 if \(k \) operations cost \(\leq k \cdot T(n) \)
- e.g. average time, averaged over the \(k \) ops.
 (as in aggregate method)
- in general free to assign amortized costs
 so long as total cost is preserved
- e.g. can say 2-3 trees achieve
 \(O(1) \) worst-case per create-empty
 \(O(\lg n^*) \) amortized per insert
 \(\emptyset \) amortized per delete (assuming exists)
where \(n^* = \) maximum size of set at any time
because \(c \) creations, \(i \) insertions, \(d \leq i \) deletions
\[
\text{cost } \leq \frac{O(c + (i+d) \lg n^*)}{2i} = O(c + i \lg n^* + \emptyset d)
\]
- we’ll tighten to \(O(\lg n) \) where
 \(n = \) current set size, below
Accounting method: “planning ahead for rainy day”
- allow an operation to store credit (like bank) ⇒ amortized cost > actual cost
- allow operations to pay using existing credit ⇒ amortized cost < actual cost

Example: table doubling
- when inserting an element, add a coin to it representing \(c = \Theta(1) \) work
- when table needs to double \(n \rightarrow 2n \), \(n/2 \) new elements still with coins

\[\begin{array}{cccccccc}
X & X & X & X & X & X & X & X \\
\text{coin} & & & & & & & \\
\end{array} \rightarrow \frac{n}{2} \rightarrow \]
- use up those coins to pay for \(\Theta(n) \) rebuild

\[\begin{array}{cccccccc}
X & X & X & X & X & X & X & X \\
\text{coin} & & & & & & & \\
\end{array} \]

\[\Theta(n) - \frac{n}{2} \cdot c \text{ amortized rebuild cost} \]
\[= 0 \text{ for large enough } c \]
- \(O(1) + c = \Theta(1) \) amortized cost per insert

Counterexample: free deletion in 2-3 trees
- claim: \(O(\lg n) \) am. insert, \(\Theta \) am. delete
- attempt: put coin worth \(\Theta(\lg n) \) on inserted element
- trouble: when deleting that element, \(n \) might be bigger ⇒ coin worth too little
Charging method: (blaming the past – not in CLRS)
- allow operations to charge cost retroactively to past operations (not future ops)
- amortized cost of op. = actual cost
 - total charge to past ops. + total charge by future ops. to this op.

Example: table doubling
- when table doubles \(n \to 2n \), charge \(\Theta(n) \) cost to \(n/2 \) inserts since last doubling
 \(\Rightarrow \) each of these elements charged \(\Theta(n/2) = \Theta(1) \)
 \& won't be charged again
 \(\Rightarrow \Theta(1) \) amortized per insert

Example: table doubling & halving
- motivation: want \(\Theta(n) \) space even with deletes
- if table down to \(1/4 \) full \((n = m/4) \):
 shrink to half size \((m \to m/2) \) at \(\Theta(n) \) cost
 \(\Rightarrow \) still half full after any resize
 \(\Rightarrow \) still \(\geq n/2 \) inserts to charge to on growth
- also \(\geq n \) deletes to charge to on shrink
- each operation charged \(\leq \) once, by \(\Theta(1) \)
 \(\Rightarrow \Theta(1) \) amortized per insert \& delete

- could do this argument with coins instead, but less intuitive (to me)
Example: free deletion in 2-3 trees
- **claim**: $O(\log n)$ am. insert, \emptyset am. delete
- insert charges nothing
- delete charges one insert:
 - **not** the insertion of same element
 (same problem as accounting method)
 - insertion that brought n
 to its current value
 - before n can reach this value again,
 must have another insert
 \[\Rightarrow \text{each insert charged at most once} \]
Potential method: (defining karma)
- define a potential function Φ mapping
data-structure configuration \rightarrow nonnegative integer
- intuitively measuring "potential energy"
 Φ = potential high costs in the future
- equivalent to total unused credit
 (\leq unused coins) stored by all past ops.
 Φ = bank account balance
- nonnegative \Rightarrow never owe the bank
- amortized cost = actual cost $+ \Delta \Phi$
 $= \Phi($DS after op.$) - \Phi($DS before op.$)$
\Rightarrow sum of amortized costs telescopes
= sum of actual costs $+ \Phi($final DS$) - \Phi($initial DS$)$$\geq \Phi$ initial balance
- so also need to pay $\Phi($initial DS$)$ at start
 ~ ideally Φ or $O(1)$ ~ else another amortization

- in accounting method, specify offset ($\Delta \Phi$)
 between actual cost & amortized cost,
 which determines total stored value (Φ)
- in potential method, specify total stored value Φ,
 which determines changes per op: $\Delta \Phi$
- sometimes one is more intuitive than other
- potential method feels most powerful (to me)
 but also the hardest to come up with proof(Φ)
Example: binary counter
- operation: increment
- increment costs $O(1 + \# \text{ trailing 1 bits})$
 so intuition is that 1 bits are bad
- define $\Phi = c \cdot \# \text{ 1 bits in counter}$
 \[\Rightarrow \Delta \Phi \text{ from increment} = c (1 - \# \text{ trailing 1 bits})\]
 \[\Rightarrow \text{amortized cost} = \text{actual cost} + \Delta \Phi\]
 \[= \Theta(1 + \# \text{ trailing 1 bits}) + c (1 - \# \text{ trailing 1 bits})\]
 \[= \Theta(1) \text{ for } c \text{ large enough}\]
- $\Phi(\text{initial DS}) = \emptyset$ assuming we start @ 000...0
 (necessary for $O(1)$ amortized bound)

Example: insert in (a,b)-trees
- $O(\log n)$ splits in worst case
- but claim only $O(1)$ amortized splits
- what causes splits? nodes overflowing
 - $\Phi = \# \text{ full nodes (nodes with b children)}$
 \[\Rightarrow \Delta \Phi \leq 1 - \# \text{ splits}\]
 add child @ top //each split turns full node $\Rightarrow 2$ nonfull
 \[\Rightarrow \text{amortized \# splits} = \text{actual \# splits} + \Delta \Phi\]
 \[\leq \# \text{ splits} + 1 - \# \text{ splits} = 1\]
- $\Phi(\text{initial DS}) = \emptyset$ if we start empty
Example: insert & delete in (a,b)-trees
- claim $O(1)$ amortized splits & merges
- overflows cause splits \rightarrow full nodes
- underflows cause merges \rightarrow bare nodes
- $D = \# \text{ full nodes} + \# \text{ bare nodes}$ $\downarrow \text{ children}$
- insert: $\Delta D \leq 1 - \# \text{ splits}$

Assuming split creates no bare nodes:

- Over
 - b keys
 - b+1 children

- Need $\left\lfloor \frac{b+1}{2} \right\rfloor > a$
 - i.e. $b > 2a$
 - i.e. $b \geq 2a+1$
 - Slightly bigger gap than Lecture 7
 - E.g. $(2,5)$-trees but not 2-3 or 2-3-4

- Delete: $\Delta D \leq 1 - \# \text{ merges}$

Assuming merge creates no bare nodes

- Under
 - a-2 keys
 - a-1 children

- Need $2a-1 < b$
 - i.e. $2a-1 \leq b-1$
 - i.e. $2a \leq b$ \sim fine

\Rightarrow amortized costs $= O(1)$