Today: Matching
- bipartite matching as flow
- augmenting paths
- Edmonds’ algorithm & improvements
- weighted matching

Matching = set M of edges sharing no endpoints
- cardinality $|M|$ = # edges in M
- goal: given undirected graph, find max. cardinality matching
- perfect if $|M| = |V|/2$

Bipartite matching: matching in bipartite graph $G = (V = A \cup B, E), E \subseteq A \times B$
- can be reduced to network flow:

- add edges (s, A) & (B, t), all capacities 1
 ⇒ choose ≤1 edge per vertex... in total
- Ford-Fulkerson uses integer flows if integer capac.
 ⇒ no splitting of unit flow e.g. ➔
- max flow = max cardinality matching
Augmenting paths:
- what does an augmenting path in the flow network look like in the matching?
- 1-flow edge \((u,u)\) isn't in the residual graph... but its reverse \((u,u)\) is
- starts with \(0\)-flow edge \((s,a_1)\), \(a_1 \in A\) = unmatched vertex \(a_1\) in \(A\)
- ends with \(0\)-flow edge \((b_k,t)\), \(b_k \in B\) = unmatched vertex \(b_k\) in \(B\)
- in between, follow a path in \(G\)
 \[a_1 \to b_1 \to a_2 \to b_2 \to \cdots \to a_k \to b_k \]
 - each \(a_i \to b_i\) must be \(0\)-flow
 = \(\{a_i, b_i\}\) is not in matching
 - each \(b_i \to a_{i+1}\) must be \(1\)-flow
 = \(\{a_i, b_i\}\) is in matching

\(\Rightarrow\) augmenting path looks like: (without \(s\&t\))

\[\begin{array}{cccccccc}
 & \rightarrow \\
 \frac{EA}{EA} & \frac{EB}{EA} & \frac{EA}{EB} & \frac{EA}{EB} & \frac{EA}{EB} & \frac{EA}{EB} & \frac{EB}{EA} & \frac{EB}{EB} \\
\end{array} \]

i.e., an (odd-length) alternating path starting & ending with unmatched vertices

- what does augmentation do?
 - flips \(0\)-flows \(\Leftrightarrow\) \(1\)-flows
 - increases flow value by 1
Matching in general graph G:

Alternating path = path in G where every second edge is matched

Augmenting path = alternating path where first & last vertices unmatched
- can flip edges matched/unmatched along path
- get one more edge in matching
\Rightarrow wasn't maximum cardinality

Edmonds' algorithm: (high level) [1965]
- find an augmenting path
- flip it
- repeat until no augmenting paths \Rightarrow enough?

Augmentation is enough: [Berge 1957]
if matching has no aug. paths then max. cardinality

Proof: say M has no augmenting paths & M^* has maximum cardinality
- look at $M \oplus M^* = \text{XOR/symmetric difference}$
- M & M^* max. degree 1 $\Rightarrow M \oplus M^*$ max. degree 2
\Rightarrow paths [diagram]
and/or cycles [diagram]
- if $|M^*| > |M|$ then this type must exist \Rightarrow that's an augmenting path \square
Finding an augmenting path:
- in bipartite graphs, this is easy (BFS/DFS):
 always unmatched edges $A \to B$
 & matched edges $B \to A$
 so guaranteed alternating
- general graphs have odd cycles:
 - need to try traversing in both directions...

Edmonds' blossoms: [1965] "Paths, Trees, & Flowers"
- do BFS/DFS/any locally advancing search
 - forced to follow matched edges half the time
- if encounter an odd cycle, contract it to form smaller graph G' & smaller matching M':
- can extend aug. path in G' to one in G:

(Traverse clockwise or counterclockwise according to parity of unmatched edge used)
- so we've reduced finding an augmenting path to a smaller problem
- can just recurse
Simple implementation:
- for each unmatched vertex s:
 - DFS or BFS from s
 - at even depths (including s)
 try all available edges not already used in that direction
 - at odd depths, forced to follow matching
- if ever encounter another unmatched vertex: done, return augmenting path
- if ever discover a cycle:
 - ignore if even
 - if odd: contract blossom
 recurse
 expand blossom

Time: $O(V)$ blossom-induced recursions (each decreases $|V|$)
- $O(V)$ unmatched vertices s
- $O(E)$ time for DFS/BFS (assume connected)
- $O(V^2E)$ per augmentation
- $O(N)$ augmentations (each increases $|M|$)
- $O(V^3E)$ total
Improvements:
- re-use “edge visited in this direction?” between BFS/DFS calls ⇒ avoid repeating >2x
 ⇒ $O(N^3 E)$ time
- don’t actually contract blossoms, just carefully traverse them both ways
 ⇒ $O(VE)$ time [Kameda & Munro 1974] [Micali & Vazirani 1980] [Peterson & Loui 1988]
- best algorithm to date: $O(\sqrt{VE})$ time
- idea: re-use structure from one augmenting path search to the next
- for dense graphs: $O(V^{2.376})$ via fast matrix multiplication [Mucha & Sankowski 2004]
Weighted matching: given graph $G = (V, E)$ & edge weights $w: E \rightarrow \mathbb{R}$
- find matching of maximum total weight
- can drop edges of negative weight
- can add edges of zero weight \Rightarrow complete graph
\Rightarrow find perfect matching of maximum weight
- algorithms use blossoming + more
 - first: $O(V^4)$ [Edmonds 1965]
 - best: $O(VE \log V)$ [Gabli, Micali, Gabow 1982]
 & [Ball & Derigs 1983]

Bipartite case: "assignment problem" highly motivated
- suffices to repeatedly find augmenting path
 of minimum weight, where matched edges
 get positive weight & unmatched get negative
 - invariant: max-weight matching of t edges
 - proof: by induction on t
 $M_{t-1} \lor M^* = \text{alt. paths & cycles}$
 our solution $= \text{OPT}$ $\text{OPT even} \Rightarrow \text{weight } 0$
 $\text{weight } 0$
(vague)
- can join odd paths together to aug path...
 max aug. path can only be better
 $\Rightarrow w(M_t) \geq w(M^*_t) \Rightarrow \square$
- direct matched edges $A \rightarrow B$ & unmatched $B \rightarrow A$
 \Rightarrow shortest path problem
- $|V| \times \text{Bellman-Ford} \Rightarrow O(V^2E)$ time
- Johnson trick $\Rightarrow O(VE + V^2 \log V)$ time