Modeling Biological Sequence using Hidden Markov Models

Challenges in Computational Biology

Course Outline

What have we learned so far?

• Sequence alignment
 – Dynamic programming, duality path \(\Rightarrow \) alignment
 – Global / local alignment, general gap penalties
• Rapid string search
 – Exact string match, semi-numerical matching
 – Database search: Hashing, BLAST, variations
• Clustering / Modeling expression profiles
 – Algorithmic view: Clustering (k-means, hierarchical)
 – ML view: Unsupervised learning (Expectation-Maxi)
• Classification: Supervised learning
 – Model-based approach (Bayesian classification)
 – Discriminative approach (SVM and Kernel mapping)
• Problem set 1, Problem set 2

Today: apply these ideas to model DNA sequences

...GTACTCACCACGGTTACAGGATTACGTTACAGGTTACAGGTAACCGTT...

• What to do with a completely new piece of DNA
 – Align it to things we know about (database search)
 – Align it to things we don’t know about (assembly)
• Stare at it
 – Non-standard nucleotide composition?
 – Interesting k-mer frequencies?
 – Recurrent patterns?
• Model it
 – Make some hypotheses about it
 – Build a ‘generative model’ to describe it
 – Find sequences of similar type
 ➔ How do we model DNA sequences?

This week: Modeling biological sequences
(a.k.a. What to do with big unlabelled chunks of DNA)

• Ability to emit DNA sequences of a certain type
 – Not exact alignment to previously known gene
 – Preserving ‘properties’ of type, not identical sequence
• Ability to recognize DNA sequences of a certain type (state)
 – What (hidden) state is most likely to have generated observations
 – Find set of states and transitions that generated a long sequence
• Ability to learn distinguishing characteristics of each state
 – Training our generative models on large datasets
 – Learn to classify unlabelled data
Why Probabilistic Sequence Modeling?
- Biological data is noisy
- Probability provides a calculus for manipulating models
- Not limited to yes/no answers – can provide “degrees of belief”
- Many common computational tools based on probabilistic models
- Our tools:
 - Markov Chains and Hidden Markov Models (HMMs)

Definitions: HMM (Hidden Markov Model)

Definition: An HMM is a 5-tuple \((Q, V, A, E, \pi)\), where:
- \(Q\) is a finite set of states, \(|Q|=N\)
- \(V\) is a finite set of observation symbols per state, \(|V|=M\)
- \(\pi\) is the initial state probabilities
- \(A\) is the state transition probabilities, denoted by \(a_{st}\) for each \(s, t \in Q\)
 - For each \(s, t \in Q\) the transition probability is: \(a_{st} = P(X_t = x_t | X_{t-1} = x_{t-1})\)
- \(E\) is a probability emission matrix, \(e_{ux} = P(v_x \text{ at time } t | q_t = s)\)

Output: Only emitted symbols are observable by the system but not the underlying random walk between states \(\rightarrow \text{"hidden"}\)

Property: Emissions and transitions are dependent on the current state only and not on the past.

The six algorithmic settings for HMMs

One path

1. **Scoring**
 - \(P(x, \pi)\) Prob of a path, emissions

2. **Decoding**
 - \(\pi^* = \argmax_{\pi} P(x, \pi)\) Path containing the most likely state at any time point.

3. **Learning**
 - \(A^* = \argmax_A P(x, \pi(A))\)
 - \(\Lambda^* = \argmax_{\Lambda} \Sigma_{\pi(\Lambda)}\)
 - Baum-Welch training, over all paths

All paths

4. **Decoding**
 - \(P(x) = \sum_{\pi} P(x, \pi)\) Prob of emissions, over all paths

5. **Learning**
 - \(A^* = \argmax_A P(x, \pi(A))\)
 - \(\Lambda^* = \argmax_{\Lambda} \Sigma_{\pi(\Lambda)}\)
 - Baum-Welch training, over all paths

Example 1: Finding GC-rich regions

- Promoter regions frequently have higher counts of Gs and Cs
- Model genome as nucleotides drawn independently from two distributions: Background (B) and Promoters (P).
- Emission probabilities based on nucleotide composition in each.
- Transition probabilities based on relative abundance & avg. length

HMM as a Generative Model

- \(P(S|P)\)
- \(P(S|B)\)
- \(P(S|A)\)
- \(P(L_0|L)\)

HMM as a Generative Model

- \(S\): G, C, A, T

Definition: Markov Chain

Definition: A Markov chain is a triplet \((Q, p, A)\), where:
- \(Q\) is a finite set of states. Each state corresponds to a symbol in the alphabet \(\Sigma\)
- \(p\) is the initial state probabilities.
- \(A\) is the state transition probabilities, denoted by \(a_{st}\) for each \(s, t \in Q\).

Output: The output of the model is the set of states at each instant time \(\rightarrow\) the set of states are observable

Property: The probability of each symbol \(x_t\) depends only on the value of the preceding symbol \(x_{t-1}\):

\[
P(x_t | x_{t-1}, ..., x_1) = P(x_t | x_{t-1})
\]

Formula: The probability of the sequence:

\[
P(s) = P(x_1, x_2, ..., x_t) = P(x_t | x_{t-1}) P(x_{t-1} | x_{t-2})... P(x_2 | x_1) P(x_1)
\]

Example 1: Finding GC-rich regions

- Promoter regions frequently have higher counts of Gs and Cs
- Model genome as nucleotides drawn independently from two distributions: Background (B) and Promoters (P).
- Emission probabilities based on nucleotide composition in each.
- Transition probabilities based on relative abundance & avg. length

Why Probabilistic Sequence Modeling?

- Biological data is noisy
- Probability provides a calculus for manipulating models
- Not limited to yes/no answers – can provide “degrees of belief”
- Many common computational tools based on probabilistic models
- Our tools:
 - Markov Chains and Hidden Markov Models (HMMs)
Sequence Classification

PROBLEM: Given a sequence, is it a promoter region?

- We can calculate $P(S|MP)$, but what is a sufficient P value?[1](#)

SOLUTION: compare to a null model and calculate log-likelihood ratio

- e.g. background DNA distribution model, B

$$\text{Score} = \log \frac{P(S|MP)}{P(S|B)}$$

Finding GC-rich regions

- Could use the log-likelihood ratio on windows of fixed size

- Downside: have to evaluate all islands of all lengths repeatedly

- Need: a way to easily find transitions

Probability of seq, path if all promoter

$$L:\quad P \quad S:\quad G \quad 0.30 \quad C \quad 0.42 \quad A \quad 0.15 \quad T \quad 0.15 \quad A \quad 0.15 \quad A \quad 0.15 \quad T \quad 0.13 \quad G \quad 0.30 \quad S:\quad G \quad 0.30$$

$$P(x,\pi) = a_P^x e_P(G)^x a_P^x e_P(G)^x a_P^x e_P(C)^x a_P^x e_P(A)^x a_P^x$$

$$= a_P^x (0.75)^x (0.15)^x (0.13)^x (0.30)^x (0.42)^x$$

$$= 0.3 \times 10^{-7}$$

Why is this so small?

Probability of seq, path sequence if mixed

$$L:\quad B \quad B \quad B \quad P \quad P \quad B \quad B \quad S:\quad G \quad 0.25 \quad C \quad 0.25 \quad A \quad 0.42 \quad A \quad 0.42 \quad A \quad 0.42 \quad T \quad 0.30 \quad G \quad 0.25$$

$$P(x,\pi) = a_P^x e_P(G)^x a_P^x e_P(B)^x a_P^x e_P(C)^x a_P^x e_P(A)^x a_P^x$$

$$= a_P^x (0.85)^x (0.25)^x (0.75)^x (0.42)^x (0.30)^x (0.25)^x$$

$$= 6.7 \times 10^{-7}$$

Should we try all possibilities? What is the most likely path?

The six algorithmic settings for HMMs

One path

1. Scoring x, one path
 $$P(x,\pi)$$

2. Scoring x, all paths
 $$P(x) = \sum_{\pi} P(x,\pi)$$

All paths

3. Viterbi decoding
 $$\pi^* = \arg\max_{\pi} P(x,\pi)$$

4. Posterior decoding
 $$\pi^* = \{\pi \mid \pi = \arg\max_{\pi} \sum_{x} P(x,\pi)\}$$

5. Supervised learning, given π^*
 $$\Lambda^* = \arg\max_{\Lambda} P(x,\pi^*)$$

6. Unsupervised learning
 $$\Lambda^* = \arg\max_{\Lambda} \sum_{x} P(x,\pi)$$

Path containing the most likely state at any time point.
3. DECODING: What was the sequence of hidden states?

Given: Model parameters \(e_i(.) \), \(a_{ij} \)

Given: Sequence of emissions \(x \)

Find: Sequence of hidden states \(\pi \)

Finding the optimal path

• We can now evaluate any path through hidden states, given the emitted sequences
• How do we find the best path?

• Optimal substructure! Best path through a given state is:
 - Best path to previous state
 - Best transition from previous state to this state
 - Best path to the end state

→ Viterbi algorithm
 - Define \(V_k(i) = \text{Probability of the most likely path through state } \pi_k \)
 - Compute \(V_k(i+1) \) as a function of \(\max_{k'} \{ V_k'(i) \} \)
 \[
 V_k(i+1) = e_k(x_{i+1}) \times \max_j a_{jk} V_j(i)
 \]

→ Dynamic Programming

Finding the most likely path

• Find path \(\pi^* \) that maximizes total joint probability \(P(x, \pi) \)

\[
P(x, \pi) = \prod_{i=0}^{N-1} e_{\pi_i}(x_i) \times \max_{j} a_{\pi_i \pi_{i+1}}
\]

The Viterbi Algorithm

Input: \(x = x_1, \ldots, x_N \)

Initialization:
\(V_0(0) = 1, V_k(0) = 0, \text{ for all } k > 0 \)

Iteration:
\(V_k(i) = e_k(x_i) \times \max_j a_{jk} V_{j}(i-1) \)

Termination:
\(P(x, \pi^*) = \max_k V_k(N) \)

The six algorithmic settings for HMMs

One path

1. Scoring x, one path
 \(P(x, \pi) \)
 Prob of a path, emissions

2. Scoring x, all paths
 \(P(x) = \sum_{\pi} P(x, \pi) \)
 Prob of emissions, over all paths

All paths

3. Viterbi decoding
 \(\pi^* = \arg \max_{\pi} P(x, \pi) \)
 Most likely path

4. Posterior decoding
 \(\pi^* = (\pi_1, \ldots, \pi_N) = \arg \max_{\pi} \sum_{\pi} P(\pi; x) \)
 Path containing the most likely state at any time point.

5. Supervised learning, given \(\pi^* \)
 \(\Lambda^* = \arg \max_{\Lambda} P(x, \pi^*; \Lambda) \)
 Viterbi training, best path

6. Unsupervised learning
 \(\Lambda^* = \arg \max_{\Lambda} \sum_{\pi} P(x, \pi; \Lambda) \)
 Baum-Welch training, over all paths
2. EVALUATION
(how well does our model capture the world)

Given: Model parameters $e_i(.)$, a_{ij}
Given: Sequence of emissions x
Find: $P(x|M)$, summed over all possible paths π

Simple: Given the model, generate some sequence x

1. Start at state π_1 according to prob $a_{0\pi_1}$
2. Emit letter x_1 according to prob $e_{\pi_1}(x_1)$
3. Go to state π_2 according to prob $a_{\pi_1\pi_2}$
4. ... until emitting x_n

We have some sequence x that can be emitted by p. Can calculate its likelihood. However, in general, many different paths may emit this same sequence x.

How do we find the total probability of generating a given x, over any path?

Complex: Given x, was it generated by the model?

Given a sequence x,
What is the probability that x was generated by the model (using any path)?

- $P(x) = \sum_\pi P(x, \pi)$

- Challenge: exponential number of paths

The Forward Algorithm – derivation

Define the forward probability:

$f(i) = P(x_1, ..., x_i, \pi_i = l)$

$= \sum_{\pi_1, ..., \pi_{i-1}} P(x_1, ..., x_i, \pi_1, ..., \pi_{i-1}, \pi_i = l) e_\pi(x_i)$

$= \sum_{\pi_1, ..., \pi_{i-1}} P(x_1, ..., x_{i-1}, \pi_1, ..., \pi_{i-2}, \pi_{i-1}) a_{\pi_{i-1}\pi_i} e_\pi(x_i)$

$= \sum_{\pi_1, ..., \pi_{i-1}} f_{i-1}(\pi_{i-1}) a_{\pi_{i-1}\pi_i} e_\pi(x_i)$

$= e_\pi(x_i) \sum_{\pi_1, ..., \pi_{i-1}} f_{i-1}(\pi_{i-1}) a_{\pi_{i-1}\pi_i}$

Calculate total probability $\sum_\pi P(x, \pi)$ recursively

- Assume we know $f(i)$ for the previous time step $(i-1)$

- Calculate $f(i)$

 $f_i(l) = e_l(x_i) \sum_{\pi_{i-1}} f_{i-1}(\pi_{i-1}) a_{\pi_{i-1}l}$
The Forward Algorithm

Input: \(x = x_1 \ldots x_N \)

Initialization:
\(f_0(0) = 1, f_k(0) = 0, \text{ for all } k > 0 \)

Iteration:
\(f_k(i) = e^{K(x_i)} \times \sum_{j} a_{jk} f_{k-1}(j) \)

Termination:
\(P(x, \pi^*) = \sum_{k} f_k(N) \)

In practice:
- Sum of log scores is difficult
- \(\approx \) approximate \(\exp(1+p+q) \)
- Scaling of probabilities

Running time and space:
- Time: \(O(K^2N) \)
- Space: \(O(KN) \)

The six algorithmic settings for HMMs

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scoring, one path</td>
<td>(P(x, \pi))</td>
</tr>
<tr>
<td>2. Scoring, all paths</td>
<td>(P(x) = \sum_{\pi} P(x, \pi))</td>
</tr>
<tr>
<td>3. Viterbi decoding</td>
<td>(\pi^* = \arg\max_{\pi} P(x, \pi)) Most likely path</td>
</tr>
<tr>
<td>4. Posterior decoding</td>
<td>(\pi^* = { \pi_i</td>
</tr>
<tr>
<td>5. Supervised learning</td>
<td>(\Lambda^* = \arg\max_{\Lambda} \sum_{\pi} P(x, \pi</td>
</tr>
<tr>
<td>6. Unsupervised learning</td>
<td>(\Lambda^* = \arg\max_{\Lambda} \max_{\pi} P(x, \pi</td>
</tr>
</tbody>
</table>

Increasing the state of the system (looking back)

- **Markov Models are memory-less**
 - In other words, all memory is encoded in the states
 - To remember additional information, augment state

- **Our first HMM had minimal memory**
 - State, emissions, only depend on current state
 - Current state only encoded one previous nucleotide

- **How do you count di-nucleotide frequencies?**
 - CpG islands: di-nucleotides
 - Codon triplets: tri-nucleotides
 - Di-codon frequencies: six nucleotides

 ➔ Expanding the number of states

Counting nucleotide transitions: Markov/HMM

- **Markov Chain**
 - \(Q \): states
 - \(p \): initial state probabilities
 - \(A \): transition probabilities

- **HMM**
 - \(Q \): states
 - \(V \): observations
 - \(p \): initial state probabilities
 - \(A \): transition probabilities
 - \(E \): emission probabilities

Example 2: CpG islands: incorporating memory

- **Markov Chain**
 - \(Q \): states
 - \(p \): initial state probabilities
 - \(A \): transition probabilities

- **HMM**
 - \(Q \): states
 - \(V \): observations
 - \(p \): initial state probabilities
 - \(A \): transition probabilities
 - \(E \): emission probabilities

What have we learned?

- **Modeling sequential data**
 - Recognize a type of sequence, genomic, oral, verbal, visual, etc...

- **Definitions**
 - Markov Chains
 - Hidden Markov Models (HMMs)

- **Simple examples**
 - Recognizing GC-rich regions.
 - Recognizing CpG dinucleotides

- **Our first computations**
 - Running the model: know model \(\rightarrow \) generate sequence of a 'type'
 - Evaluation: know model, emissions, states \(\rightarrow \) \(p \)?
 - Viterbi: know model, emissions \(\rightarrow \) find optimal path
 - Forward: know model, emissions \(\rightarrow \) total \(p \) over all paths

- **Next time:**
 - Posterior decoding
 - Supervised learning
 - Unsupervised learning: Baum-Welch, Viterbi training