Lecture 15: Broadcast routing

Source: Eytan Modiano
Broadcast Routing

• Route a packet from a source to all nodes in the network

• Possible solutions:

 – Flooding: Each node sends packet on all outgoing links
 Discard packets received a second time

 – Spanning Tree Routing: Send packet along a tree that includes all of
 the nodes in the network
A graph $G = (N,A)$ is a finite nonempty set of nodes and a set of node pairs A called arcs (or links or edges).

- $N = \{1,2,3,4\}$
- $A = \{(1,2),(2,3),(1,4),(2,4)\}$

- $N = \{1,2,3\}$
- $A = \{(1,2)\}$
Walks and paths

- A walk is a sequence of nodes \((n_1, n_2, \ldots, n_k)\) in which each adjacent node pair is an arc.

- A path is a walk with no repeated nodes.
Cycles

- A cycle is a walk \((n_1, n_2, \ldots, n_k)\) with \(n_1 = n_k\), \(k > 3\), and with no repeated nodes except \(n_1 = n_k\)

Cycle (1, 2, 4, 3, 1)
A graph is connected if a path exists between each pair of nodes.

An unconnected graph can be separated into two or more connected components.
Acyclic graphs and trees

- An acyclic graph is a graph with no cycles.
- A tree is an acyclic connected graph.

![Graphs example](image)

- Acyclic, connected
- unconnected, not tree
- Cyclic, not tree

- The number of arcs in a tree is always one less than the number of nodes
 - Proof: start with arbitrary node and each time you add an arc you add a node
 \[\Rightarrow \text{N nodes and N-1 links}. \] If you add an arc without adding a node, the arc must go to a node already in the tree and hence form a cycle
Subgraphs

- $G' = (N', A')$ is a subgraph of $G = (N, A)$ if
 - 1) G' is a graph
 - 2) N' is a subset of N
 - 3) A' is a subset of A

- One obtains a subgraph by deleting nodes and arcs from a graph
 - Note: arcs adjacent to a deleted node must also be deleted

Graph G Subgraph G' of G
Spanning trees

- $T = (N', A')$ is a spanning tree of $G = (N, A)$ if
 - T is a subgraph of G with $N' = N$ and T is a tree

Graph G

Spanning tree of G
Spanning trees

• Spanning trees are useful for disseminating and collecting control information in networks; they are sometimes useful for routing

• To disseminate data from Node n:
 – Node n broadcasts data on all adjacent tree arcs
 – Other nodes relay data on other adjacent tree arcs

• To collect data at node n:
 – All leaves of tree (other than n) send data
 – Other nodes (other than n) wait to receive data on all but one adjacent arc, and then send received plus local data on remaining arc
General construction of a spanning tree

• Algorithm to construct a spanning tree for a connected graph $G = (N,A)$:

 1) Select any node n in N; $N' = \{n\}$; $A' = \{\}$

 2) If $N' = N$, then stop ($T = (N', A')$ is a spanning tree)

 3) Choose $(i,j) \in A$, $i \in N'$, $j \notin N'$

 $N' := N' \cup \{j\}$; $A' := A' \cup \{(i,j)\}$; go to step 2

• Connectedness of G assures that an arc can be chosen in step 3 as long as $N' \neq N$

• Is spanning tree unique?
Spanning tree algorithm

- The algorithm never forms a cycle, since each new arc goes to a new node.

- \(T = (N', A') \) is a tree at each step of the algorithm since \(T \) is always connected, and each time we add an arc we also add a node.

- Theorem: If \(G \) is a connected graph of \(n \) nodes, then
 1) \(G \) contains at least \(n-1 \) arcs
 2) \(G \) contains a spanning tree
 3) if \(G \) contains exactly \(n-1 \) arcs, \(G \) is a spanning tree
Distributed algorithms to find spanning trees

1) A fixed node sends a "start" message on each adjacent arc of the graph

2) Each other node marks the first arc on which a start message was received as a spanning tree arc and then sends a "start" message on each other arc
 - This is a distributed implementation of the general spanning tree algorithm
 - It has several problems shared by many such algorithms:
 a) who chooses the starting node?
 b) When does the algorithm terminate?
 c) The resulting tree is somewhat random
Min weight spanning tree

• Given a graph with weights assigned to each arc, find a spanning tree of minimum total weight (MST)

• Define a "fragment" to be a subtree of a MST

• Theorem:
 – Given a fragment F of an MST, Let a(i,j) be a minimum weight outgoing arc from F, where j is not in F.
 – Then, F extended by arc a(i,j) & node j is a fragment.

• Proof:
 – Let M be the MST that does not include a(i,j).
 – Since a(i,j) is not part of M, then adding a(i,j) to M must cause a cycle. There must be some link in the cycle b ≠ a which is outgoing from F.
 – Deleting b and adding a creates a new spanning tree. Since weight of b cannot be less then weight of a , M' must be a MST.
 If weight of a = weight of b, then both are MST’s otherwise M could not have been an MST
MST algorithms

• Generic MST algorithm steps:
 – Given a collection of subtrees of an MST (called fragments) add a minimum weight outgoing edge to some fragment

• Greedy algorithm
 – Sort all edges as per their weights in ascending order
 – Select edges in this order without forming cycles

• Prim-Dijkstra: Start with an arbitrary single node as a fragment
 – Add minimum weight outgoing edge

• Kruskal: Start with each node as a fragment;
 – Add the minimum weight outgoing edge, minimized over all fragments
Greedy Algorithm

• Step 1: Sort edges
 – As per their edge weights in ascending order
 – Break ties arbitrarily
 – Denote this ordered set of edges as S

• Step 2: Form a tree
 – Let A be collection of edges that are chosen as part of tree
 Initially $A = \{\}$
 – Add minimum weight edge from S to A
 Delete all edges in S that form cycle in A
 – Repeat the above step till $S = \{\}$
Prim-Dijkstra Algorithm

Step 1

Step 2

Step 3

Step 4

Step 5
• Suppose the arcs of weight 1 and 3 are a fragment

 – Consider any spanning tree using those arcs and the arc of weight 4, say, which is an outgoing arc from the fragment.

 – Suppose that spanning tree does not use the arc of weight 2.

 – Removing the arc of weight 4 and adding the arc of weight 2 yields another tree of smaller weight.

 – Thus an outgoing arc of min weight from fragment must be in MST.