Particle Systems and ODEs
Types of Animation

- Keyframing
- Procedural
- Physically-based
 - Particle Systems (today)
 - Smoke, water, fire, sparks, etc.
 - Usually heuristic as opposed to simulation, but not always
 - Mass-Spring Models (Cloth)
 - Thursday
 - Continuum Mechanics (fluids, etc.), finite elements
 - Not in this class
 - Rigid body simulation
 - Not in this class
Types of Animation: Physically-Based

- Assign physical properties to objects
 - Masses, forces, etc.
- Also procedural forces (like wind)
- Simulate physics by solving equations of motion
 - Rigid bodies, fluids, plastic deformation, etc.
- Realistic but difficult to control

\[m \quad v_0 \quad g \]
Types of dynamics

- Point
Types of dynamics

- Point
- Rigid body
Types of dynamics

- Point
- Rigid body
- Deformable body (include clothes, fluids, smoke, etc.)
Today We Focus on Point Dynamics

• Lots of points!
• Particles systems
 – Borderline between procedural and physically-based
Particle Systems Overview

- **Emitters** generate tons of “particles”
 - Sprinkler, waterfall, chimney, gun muzzle, exhaust pipe, etc.
Particle Systems Overview

- **Emitters** generate tons of “particles”
- Describe the external **forces** with a force field
 - E.g., gravity, wind
Particle Systems Overview

- **Emitters** generate tons of “particles”
- Describe the external **forces** with a force field
- **Integrate** the laws of mechanics (ODEs)
 - Makes the particles move

Image Jeff Lander

http://www.particlesystems.org/
Particle Systems Overview

- **Emitters** generate tons of “particles”
- Describe the external **forces** with a force field
- **Integrate** the laws of mechanics (ODEs)
- In the simplest case, each particle is **independent**
Particle Systems Overview

- **Emitters** generate tons of “particles”
- Describe the external **forces** with a force field
- **Integrate** the laws of mechanics (ODEs)
- In the simplest case, each particle is **independent**
- If there is enough **randomness** (in particular at the emitter) you get nice effects
 - sand, dust, smoke, sparks, flame, water, …
Demo

- Simple “waterfall” built on top of Assignment 0
 - Each particle affected by gravity
 - Simple obstacle geometry (spheres)
 - Braindead rendering (screen-aligned transparent quads)
Demo

• Simple “waterfall” built on top of Assignment 0
 – Each particle affected by gravity
 – Simple obstacle geometry (spheres)
 – Braindead rendering (screen-aligned transparent quads)
 • Could add animated textures and some sounds

Note: No interaction between particles. It’s not a fluid simulation! But then again, it took under an hour to code up.
Real-Time Particles Demo

- 3DMark03 by Futuremark Corp.
 - Explosions, vapor trails, muzzle flashes are particles
Generalizations

- More advanced versions of behavior
 - flocks, crowds
- Forces between particles
 - Not independent any more

See http://www.red3d.com/cwr/boids/ for discussion on how to do flocking.

We’ll come back to this a little later.
Generalizations – Thursday

- Mass-spring and deformable surface dynamics
 - surface represented as a set of points
 - forces between neighbors keep the surface coherent
Generalizations

• It’s not all hacks: Smoothed Particle Hydrodynamics (SPH)
 – A family of “real” particle-based fluid simulation techniques.

 – Fluid flow is described by the Navier-Stokes Equations, a nonlinear partial differential equation (PDE)
 • SPH discretizes the fluid as small packets (particles!), and evaluates pressures and forces based on them.
These Stanford folks use SPH for resolving the small-scale spray and mist that would otherwise be too much for the grid solver to handle.

Another SPH Example

Predictive-Corrective Incompressible SPH. Barbara Solenthaler, Renato Pajarola. ACM Transactions on Graphics (SIGGRAPH), 2009
Meshless Techniques

- Most simulation techniques work on either regular grids or meshes constructed from triangles/tets
- PDEs defined on space are discretized on the grid.
Meshless Techniques

- Most simulation techniques work on either regular grids or meshes constructed from triangles/tets
- In contrast, so-called *meshless methods* do not require the underlying space to be discretized
 - Instead, represent things using points (particles!)
 - They can still be “well-founded”: SPH is an example.
 - Another example: Point-Based Animation of Elastic, Plastic and Melting Objects (Müller, Keiser, Nealen, Pauly, Gross, Alexa, SCA 2004)
Take-Home Message

• Particle-based methods can range from pure heuristics (hacks that happen to look good) to “real” simulation

• Basics are the same: Things always boil down to integrating ODEs!
 – Also in the case of grids/computational meshes
Questions?
What is a Particle System?

- Collection of many small simple pointlike things
 - Described by their current state: position, velocity, age, color, etc.
- Particle motion influenced by external force fields and internal forces between particles
- Particles created by generators or emitters
 - With some randomness
- Particles often have lifetimes
- Particles are often independent
- Treat as points for dynamics, but rendered as anything you want

Simple particle system: sprinkler

PL: linked list of particle = empty;
Simple particle system: sprinkler

PL: linked list of particle = empty;
spread=0.1; // how random the initial velocity is
colorSpread=0.1; // how random the colors are
Simple particle system: sprinkler

PL: linked list of particle = empty;
spread=0.1; //how random the initial velocity is
colorSpread=0.1; //how random the colors are
For each time step
Simple particle system: sprinkler

PL: linked list of particle = empty;
spread=0.1; //how random the initial velocity is
colorSpread=0.1; //how random the colors are
For each time step
 Generate k particles
 p=new particle();
 p->position=(0,0,0);
 p->velocity=(0,0,1)+spread*(rnd(), rnd(), rnd());
 p.color=(0,0,1)+colorSpread*(rnd(), rnd(),rnd());
 PL->add(p);
Simple particle system: sprinkler

PL: linked list of particle = empty;
spread=0.1; //how random the initial velocity is
colorSpread=0.1; //how random the colors are
For each time step
 Generate k particles
 p=new particle();
 p->position=(0,0,0);
 p->velocity=(0,0,1)+spread*(rnd(), rnd(), rnd());
 p.color=(0,0,1)+colorSpread*(rnd(), rnd(),rnd());
 PL->add(p);
 For each particle p in PL
 p->position+=p->velocity*dt; //dt: time step
 p->velocity-=g*dt; //g: gravitation constant
 glColor(p.color);
 glVertex(p.position);
Simple particle system: sprinkler

PL: linked list of particle = empty;
spread=0.1; //how random the initial velocity is
colorSpread=0.1; //how random the colors are
For each time step
 Generate k particles
 p=new particle();
 p->position=(0,0,0);
 p->velocity=(0,0,1)+spread*(rnd(), rnd(), rnd());
 p.color=(0,0,1)+colorSpread*(rnd(), rnd(), rnd());
 PL->add(p);
 For each particle p in PL
 p->position+=p->velocity*dt; //dt: time step
 p->velocity-=g*dt; //g: gravitation constant
 glColor(p.color);
 glVertex(p.position);
Questions?
Ordinary Differential Equations

\[
\frac{dX(t)}{dt} = f(X(t), t)
\]

- Given a function \(f(X, t) \) compute \(X(t) \)
- Typically, initial value problems:
 - Given values \(X(t_0) = X_0 \)
 - Find values \(X(t) \) for \(t > t_0 \)

- We can use lots of standard tools
Point mass: 2nd order ODE

\[\vec{F} = m\ddot{x} \quad \text{or} \quad \vec{F} = m \frac{d^2\vec{x}}{dt^2} \]

Position \(\vec{x} \) and force \(\vec{F} \) are vector quantities
– We know \(\vec{F} \) and \(m \), want to solve for \(\vec{x} \)

You’ve all seen this a million times before
Reduction to 1st Order

• Point mass: 2nd order ODE

\[\vec{F} = m \ddot{x} \quad \text{or} \quad \vec{F} = m \frac{d^2 \vec{x}}{dt^2} \]

• Corresponds to system of first order ODEs

\[
\begin{cases}
\frac{d}{dt} \vec{x} = \vec{v} \\
\frac{d}{dt} \vec{v} = \vec{F} / m
\end{cases}
\]

2 unknowns (x, v) instead of just x
Reduction to 1st Order

\[
\begin{aligned}
\frac{d}{dt} \vec{x} &= \vec{v} \\
\frac{d}{dt} \vec{v} &= \vec{F} / m
\end{aligned}
\]

2 variables (\(x, v\)) instead of just one

• Why reduce?
Reduction to 1st Order

\[
\begin{align*}
\frac{d}{dt} \vec{x} &= \vec{v} \\
\frac{d}{dt} \vec{v} &= \vec{F} / m
\end{align*}
\]

2 variables \((\vec{x}, \vec{v})\) instead of just one

- Why reduce?
 - Numerical solvers grow more complicated with increasing order, can just write one 1st order solver and use it
 - Note that this doesn’t mean it would always be easy :-}
Notation

• Let’s stack the pair \((x, v)\) into a bigger state vector \(X\)

\[
X = \begin{pmatrix} \vec{x} \\ \vec{v} \end{pmatrix}
\]

For a particle in 3D, state vector \(X\) has 6 numbers

\[
\frac{d}{dt} X = f(X, t) = \begin{pmatrix} \vec{v} \\ \vec{F}(x, v)/m \end{pmatrix}
\]
Now, Many Particles

• We have N point masses
 – Let’s just stack all xs and vs in a big vector of length $6N$

\[
X = \begin{pmatrix}
 x_1 \\
 v_1 \\
 \vdots \\
 x_N \\
 v_N
\end{pmatrix}
\quad
f(X, t) = \begin{pmatrix}
 v_1 \\
 F^1(X, t) \\
 \vdots \\
 v_N \\
 F^N(X, t)
\end{pmatrix}
\]
Now, Many Particles

- We have N point masses
 - Let’s just stack all xs and vs in a big vector of length $6N$
 - F_i denotes the force on particle i

- When particles don’t interact, F_i only depends on x_i and v_i.

\[
X = \begin{pmatrix}
x_1 \\
v_1 \\
\vdots \\
x_N \\
v_N
\end{pmatrix}
\]

\[
f(X, t) = \begin{pmatrix}
v_1 \\
F_1(X, t) \\
\vdots \\
v_N \\
F_N(X, t)
\end{pmatrix}
\]

f gives $d/dt X$, remember!
Path through a Vector Field

- \(X(t) \): path in multidimensional phase space

\[
\frac{d}{dt} X = f(X, t)
\]

“When we are at state \(X \) at time \(t \), where will \(X \) be after an infinitely small time interval \(dt \)?”
Path through a Vector Field

- $X(t)$: path in multidimensional phase space

\[\frac{d}{dt} X = f(X, t) \]

“When we are at state X at time t, where will X be after an infinitely small time interval dt?”

- $f = \frac{d}{dt} X$ is a vector that sits at each point in phase space, pointing the direction.
Questions?
Numerics of ODEs

• Numerical solution is called “integration of the ODE”
• Many techniques
 – Today, the simplest one
 – Thursday and next week we’ll look at some more advanced techniques
Intuitive Solution: Take Steps

- Current state \(X \)
- Examine \(f(X,t) \) at (or near) current state
- Take a step to new value of \(X \)

\[
\frac{d}{dt} X = f(X, t)
\]

\[\Rightarrow "dX = dt \cdot f(X, t)"\]

\(f = \frac{d}{dt} X \) is a vector that sits at each point in phase space, pointing the direction.
Euler’s Method

• Simplest and most intuitive
• Pick a step size h
• Given $X_0 = X(t_0)$, take step:

$$t_1 = t_0 + h$$

$$X_1 = X_0 + h f(X_0, t_0)$$

• Piecewise-linear approximation to the path
• Basically, just replace dt by a small but finite number
Euler, Visually

\[\frac{d}{dt} X = f(X, t) \]
Euler, Visually

\[\frac{d}{dt} X = f(X, t) \]
Euler, Visually

\[\frac{d}{dt} X = f(X, t) \]
\[\frac{d}{dt} X = f(X, t) \]
Effect of Step Size

• Step size controls accuracy
• Smaller steps more closely follow curve
 – May need to take many small steps per frame
 – Properties of $f(X, t)$ determine this (more later)
Euler’s method: Inaccurate

- Moves along tangent; can leave solution curve, e.g.:
 \[f(X, t) = \begin{pmatrix} -y \\ x \end{pmatrix} \]

- Exact solution is circle:
 \[X(t) = \begin{pmatrix} r \cos(t+k) \\ r \sin(t+k) \end{pmatrix} \]
Euler’s method: Inaccurate

- Moves along tangent; can leave solution curve, e.g.:

 \[f(X, t) = \begin{pmatrix} -y \\ x \end{pmatrix} \]

- Exact solution is circle:

 \[X(t) = \begin{pmatrix} r \cos(t+k) \\ r \sin(t+k) \end{pmatrix} \]

- Euler spirals outward no matter how small \(h \) is
 - will just diverge more slowly
More Accurate Alternatives

• Midpoint, Trapezoid, Runge-Kutta
 – Also, “implicit methods” (next week)

More on this on Thursday

• Extremely valuable resource: SIGGRAPH 2001 course notes on physically based modeling
What is a Force?

• A force changes the motion of the system
 – Newton says: When there are no forces, motion continues uniformly in a straight line (good enough for us)

• Forces can depend on location, time, velocity
 – Gravity, spring, viscosity, wind, etc.

• For point masses, forces are vectors
 – Ie., to get total force, take vector sum of everything
Forces: Gravity on Earth

- Depends only on particle mass
- $f(X, t) = \text{constant}$
- Hack for smoke, etc: make gravity point up!
 - Well, you can call this buoyancy, too.

Gravity: $f^{(i)} = \begin{pmatrix} 0 \\ 0 \\ -m_i G \end{pmatrix}$
Forces: Gravity (N-body problem)

- Gravity depends on all other particles
- Opposite for pairs of particles
- Force in the direction of $p_i - p_j$ with magnitude inversely proportional to square distance

$$\| F_{ij} \| = \frac{G m_i m_j}{r^2}$$

where $G = 6.67 \times 10^{-11}$ Nm2/kg2

- Testing all pairs is $O(n^2)$!

Particles are not independent!
Real-Time Gravity Demo

- [Link to video]
An Aside on Gravity

• That was Brute Force
 – Meaning all $O(n^2)$ pairs of particles were considered when computing forces
 – Yes, computers are fast these days, but this gets prohibitively expensive soon. (The square in n^2 wins.)

• Hierarchical techniques approximate forces caused by many distant attractors by one force, yields $O(n)!$
 – This inspired very cool hierarchical illumination rendering algorithms in graphics (hierarchical radiosity, etc.)
Forces: Viscous Damping

\[f^{(i)} = -d v^{(i)} \]

- Damping force on particle i determined its velocity
 - Opposes motion
 - E.g. wind resistance
- Removes energy, so system can settle
- Small amount of damping can stabilize solver
- Too much damping makes motion like in glue
Forces: Spatial Fields

- Externally specified force (or velocity) fields in space
- Force on particle i depends only on its position
- Arbitrary functions
 - wind
 - attractors, repulsors
 - vortices
- Can depend on time
- Note: these add energy, may need damping
Example: Procedural Spatial Field

Plausible, controllable force fields – just advecting particles along the flow gives cool results!

And it’s simple, too!
Forces: Other Spatial Interaction

Spatial interaction: \(f^{(i)} = \sum_j f(x^{(i)}, x^{(j)}) \)

• E.g., approximate fluid using Lennard-Jones force:
 \[
 f(x^{(i)}, x^{(j)}) = \frac{k_1}{|x^{(i)} - x^{(j)}|^m} - \frac{k_2}{|x^{(i)} - x^{(j)}|^n}
 \]

• Repulsive + attractive force
• Again, \(O(N^2) \) to test all pairs
 – usually only local
 – Use buckets to optimize. Cf. 6.839

Particles are not independent!
Demo: Lennard-Jones

• Real-time particle system written in **CUDA**

• (May not run on external display)
More Eyecandy from NVIDIA

- Fluid flow solved using a regular grid solver
 - This gives a velocity field
- 0.5M smoke particles advected using the field
 - That means particle velocity is given by field
- Particles are for rendering, motion solved using other methods
- Link to video
That’s All for Today!

• Further reading
 • Extremely good, easy-to-read resource. Highly recommended!
 – William Reeves: Particle systems—a technique for modeling a class of fuzzy objects, Proc. SIGGRAPH 1983
 • The original paper on particle systems
 – particlesystems.org