Tasks?

- Mechanics
 - Record keeping
 - Administration
 - Scheduling
 - …
- Diagnosis
- Prognosis
- Therapy
Types of Decision Support

• “Doctor's Assistant” for clinicians at any level of training
• Expert (specialist) consultation for non-specialists
• Monitoring and error detection
• Critiquing, what-if
• Guiding patient-controlled care
• Education and Training
• Contribution to medical research
• …
Two Historical Views on How to Build Expert Systems

- Great cleverness
 - Powerful inference abilities

- Great stores of knowledge
 - Possibly limited ability to infer, but
 - Vast storehouse of relevant knowledge, indexed in an easy-to-apply form
Change over 30 years

• 1970’s: human knowledge, not much data
• 2000’s: vast amounts of data, traditional human knowledge (somewhat) in doubt
• Could we “re-discover” all of medicine from data? *I think not!*
• Should we focus on methods for reasoning with uncertain data? *Absolutely!*
Simplest Example

- Relationship between a diagnostic conclusion and a diagnostic test

<table>
<thead>
<tr>
<th></th>
<th>Disease Present</th>
<th>Disease Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Positive</td>
<td>True Positive</td>
<td>False Positive</td>
</tr>
<tr>
<td></td>
<td>TP+FP</td>
<td></td>
</tr>
<tr>
<td>Test Negative</td>
<td>False Negative</td>
<td>True Negative</td>
</tr>
<tr>
<td></td>
<td>FN+TN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP+FN</td>
<td>FP+TN</td>
</tr>
</tbody>
</table>
Definitions

<table>
<thead>
<tr>
<th></th>
<th>Disease Present</th>
<th>Disease Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Positive</td>
<td>True Positive</td>
<td>False Positive</td>
</tr>
<tr>
<td></td>
<td>TP+FP</td>
<td></td>
</tr>
<tr>
<td>Test Negative</td>
<td>False Negative</td>
<td>True Negative</td>
</tr>
<tr>
<td></td>
<td>FN+TN</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TP+FN</td>
<td>FP+TN</td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity (true positive rate): \(\frac{TP}{TP+FN} \)

False negative rate: \(1 - \text{Sensitivity} = \frac{FN}{TP+FN} \)

Specificity (true negative rate): \(\frac{TN}{FP+TN} \)

False positive rate: \(1 - \text{Specificity} = \frac{FP}{FP+TN} \)

Positive Predictive Value: \(\frac{TP}{TP+FP} \)

Negative Predictive Value: \(\frac{TN}{FN+TN} \)
Cancer Test

• We discover a cheap, 95% accurate test for cancer.
• Give it to “Mrs. Jones”, the next person who walks by 77 Mass Ave.
• Result is positive.
• What is the probability that Mrs. Jones has cancer?
Figuring out Cancer Probability

Assume Ca in 1% of general population:

\[
\frac{950}{950 + 4950} = .161
\]
At the Extremes

• If Ca probability in population is 0.1%,
 – Then post positive result, \(p(Ca) = 1.87\% \)

• If Ca probability in population is 50%,
 – Then post-positive result, \(p(Ca) = 95\% \)
Bayes’ Rule

\[P(D|T) = \frac{P(D)P(T|D)}{P(D)P(T|D) + P(\bar{D})P(T|\bar{D})} \]
Odds/Likelihood Form

\[
P(D \mid T) = \frac{P(D)P(T \mid D)}{P(D)P(T \mid D) + P(\overline{D})P(T \mid \overline{D})}
\]

\[
P(\overline{D} \mid T) = \frac{P(\overline{D})P(T \mid \overline{D})}{P(D)P(T \mid D) + P(\overline{D})P(T \mid \overline{D})}
\]

\[
\frac{P(D \mid T)}{P(\overline{D} \mid T)} = \frac{P(D)}{P(\overline{D})} \frac{P(T \mid D)}{P(T \mid \overline{D})}
\]

\[
O(D \mid T) = O(D) L(T \mid D)
\]

\[
W(D \mid T) = W(D) + W(T \mid D)
\]
Test Thresholds

- FN
- FP

T
Wonderful Test
Test Thresholds Change Trade-off between Sensitivity and Specificity
Receiver Operator Characteristic (ROC) Curve

TPR (sensitivity)

FPR (1-specificity)
What makes a better test?

FPR (1-specificity) vs. TPR (sensitivity)

- Superb
- OK
- Worthless
DeDombal, et al. Experience 1970’s & 80’s

• “Idiot Bayes” for appendicitis
• 1. Based on expert estimates -- lousy
• 2. Statistics -- better than docs
• 3. Different hospital -- lousy again
• 4. Retrained on local statistics -- good
Rationality

- Behavior is a continued sequence of choices, interspersed by the world’s responses
- Best action is to make the choice with the greatest expected value
- … decision analysis
Example: Gangrene

• From Pauker’s “Decision Analysis Service” at New England Medical Center Hospital, late 1970’s.

• Man with gangrene of foot

• Choose to amputate foot or treat medically

• If medical treatment fails, patient may die or may have to amputate whole leg.

• What to do? How to reason about it?
Decision Tree for Gangrene

1. Amputate foot
 - Live: 0.99, Cost: 850
 - Die: 0.01

2. Medicine
 - Full recovery: 0.7, Cost: 1000
 - Worse: 0.25
 - Live: 0.6, Cost: 995
 - Die: 0.4
 - Die: 0.05
Evaluating the Decision Tree

- Amputate foot
 - Live (.99)
 - Die (.01)
 - Medicine
 - Full recovery (.7)
 - Live (.98)
 - Die (.02)
 - Worse (.25)
 - Die (.05)
 - Die (.05)
 - Medicine
 - Live (.6)
 - Die (.4)
Decision Analysis:
Evaluating Decision Trees

- Outcome: directly estimate value
- Decision: value is that of the choice with the greatest expected value
- Chance: expected value is sum of (probabilities x values of results)
- “Fold back” from outcomes to current decision.
- Sensitivity analyses often more important than result(!)
HELP System uses D.A.

Fig. 29. Effect of age of patient and M_c (mortality for appendicitis without operation) on the probability threshold (point of crossing zero Δu line) for decision to operate.

Utility Analysis of Appendectomy

Fig. 30. Effect of patient's salary and assumed value of one day of good health ($70 or $140) on decision to operate for appendicitis.
Threshold

• Benefit $B = U(\text{treat dis}) - U(\text{no treat dis})$
• Cost $C = U(\text{no treat no dis}) - U(\text{treat no dis})$
• Threshold probability for treatment:

$$T = \frac{1}{\frac{B}{C} + 1}$$

Pauker, Kassirer, NEJM 1975
Test/Treat Threshold

Pauker, Kassirer, NEJM 1980
More Complex Decision Analysis Issues

- Repeated decisions
- Accumulating disutilities
- Dependence on history
- Cohorts & state transition models
- Explicit models of time
- Uncertainty in the uncertainties
- Determining utilities
 - Lotteries, ...
- Qualitative models
Example: Acute Renal Failure

• Choice of a handful (8) of therapies (antibiotics, steroids, surgery, etc.)
• Choice of a handful (3) of invasive tests (biopsies, IVP, etc.)
• Choice of 27 diagnostic “questions” (patient characteristics, history, lab values, etc.)
• Underlying cause is one of 14 diseases
 – We assume one and only one disease
Decision Tree for ARF

• Choose:
 – Surgery for obstruction
 – Treat with antibiotics
 – Perform pyelogram
 – Perform arteriography
 – Measure patient’s temperature
 – Determine if there is proteinuria
 – …
Decision Tree for ARF

- Surgery for obstruction
- Treat with antibiotics
- Perform pyelogram
- Perform arteriography
- Measure patient’s temperature
- Determine if there is proteinuria

Value = ???
What happens when we act?

• Treatment: leads to few possible outcomes
 – different outcomes have different probabilities
 • probabilities depend on distribution of disease probabilities
 – value of outcome can be directly determined
 • value may depend on how we got there (see below)
 • therefore, value of a treatment can be determined by expectation

• Test: lead to few results, revise probability distribution of diseases, and impose disutility

• Questions: lead to few results, revise probability distribution
Full decision tree
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Condition</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATN</td>
<td>Acute tubular necrosis</td>
<td>0.250</td>
</tr>
<tr>
<td>FARF</td>
<td>Functional acute renal failure</td>
<td>0.400</td>
</tr>
<tr>
<td>OBSTR</td>
<td>Urinary tract obstruction</td>
<td>0.100</td>
</tr>
<tr>
<td>AGN</td>
<td>Acute glomerulonephritis</td>
<td>0.100</td>
</tr>
<tr>
<td>CN</td>
<td>Renal cortical necrosis</td>
<td>0.020</td>
</tr>
<tr>
<td>HS</td>
<td>Hepatorenal syndrome</td>
<td>0.005</td>
</tr>
<tr>
<td>PYE</td>
<td>Pyelonephritis</td>
<td>0.010</td>
</tr>
<tr>
<td>AE</td>
<td>Atheromatous Emboli</td>
<td>0.003</td>
</tr>
<tr>
<td>RI</td>
<td>Renal infarction (bilateral)</td>
<td>0.002</td>
</tr>
<tr>
<td>RVT</td>
<td>Renal vein thrombosis</td>
<td>0.002</td>
</tr>
<tr>
<td>VASC</td>
<td>Renal vasculitis</td>
<td>0.050</td>
</tr>
<tr>
<td>SCL</td>
<td>Scleroderma</td>
<td>0.002</td>
</tr>
<tr>
<td>CGAE</td>
<td>Chronic glomerulonephritis, acute exacerbation</td>
<td>0.030</td>
</tr>
<tr>
<td>MH</td>
<td>Malignant hypertension & nephrosclerosis</td>
<td>0.030</td>
</tr>
</tbody>
</table>
ARF’s Database: P(obs|D)

<table>
<thead>
<tr>
<th>Proteinuria Diseases</th>
<th>Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ATN</td>
<td>0.1</td>
</tr>
<tr>
<td>FARF</td>
<td>0.8</td>
</tr>
<tr>
<td>OBSTR</td>
<td>0.7</td>
</tr>
<tr>
<td>AGN</td>
<td>0.01</td>
</tr>
<tr>
<td>CN</td>
<td>0.01</td>
</tr>
<tr>
<td>HS</td>
<td>0.8</td>
</tr>
<tr>
<td>PYE</td>
<td>0.4</td>
</tr>
<tr>
<td>AE</td>
<td>0.1</td>
</tr>
<tr>
<td>RI</td>
<td>0.1</td>
</tr>
<tr>
<td>RVT</td>
<td>0.001</td>
</tr>
<tr>
<td>VASC</td>
<td>0.01</td>
</tr>
<tr>
<td>SCL</td>
<td>0.1</td>
</tr>
<tr>
<td>CGAE</td>
<td>0.001</td>
</tr>
<tr>
<td>MH</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Questions

- Blood pressure at onset
- proteinuria
- casts in urine sediment
- hematuria
- history of prolonged hypotension
- urine specific gravity
- large fluid loss preceding onset
- kidney size
- urine sodium
- strep infection within three weeks
- urine volume
- recent surgery or trauma
- age
- papilledema
- flank pain
- skin, intestinal or lung lesions

- history of proteinuria
- symptoms of bladder obstruction
- exposure to nephrotoxic drugs
- disturbance in clotting mechanism
- pyuria
- bacteriuria
- sex
- transfusion within one day
- jaundice or ascites
- ischemia of extremities or aortic aneurism
- atrial fibrillation or recent MI
Invasive tests and treatments

• Tests
 – biopsy
 – retrograde pyelography
 – transfemoral arteriography

• Treatments
 – steroids
 – conservative therapy
 – iv-fluids
 – surgery for urinary tract obstruction
 – antibiotics
 – surgery for clot in renal vessels
 – antihypertensive drugs
 – heparin
Updating probability distribution

\[P_{i+1}(D_j) = \frac{P_i(D_j)P(S|D_j)}{\sum_{k=1}^{n} P_i(D_k)P(S|D_k)} \]

Bayes’ rule
Value of treatment

- Three results: improved, unchanged, worsened
 - each has an innate value, modified by “tolls” paid on the way

- Probabilities depend on underlying disease probability distribution

```
   Tx
    /   \
   /     \
 pU    pI
    /     \
 U     I
    /     \
  V(U)   V(I)
```

```
   W
    \   
     \  
      \ W
```

V(U) V(W)
Modeling treatment

<table>
<thead>
<tr>
<th>Steroids</th>
<th>improved</th>
<th>unchanged</th>
<th>worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>atn</td>
<td>0.60</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>farf</td>
<td>0.05</td>
<td>0.35</td>
<td>0.60</td>
</tr>
<tr>
<td>obstr</td>
<td>0.05</td>
<td>0.60</td>
<td>0.35</td>
</tr>
<tr>
<td>agn</td>
<td>0.40</td>
<td>0.40</td>
<td>0.20</td>
</tr>
<tr>
<td>cn</td>
<td>0.05</td>
<td>0.75</td>
<td>0.20</td>
</tr>
<tr>
<td>hs</td>
<td>0.05</td>
<td>0.05</td>
<td>0.90</td>
</tr>
<tr>
<td>pye</td>
<td>0.05</td>
<td>0.05</td>
<td>0.90</td>
</tr>
<tr>
<td>ae</td>
<td>0.05</td>
<td>0.70</td>
<td>0.25</td>
</tr>
<tr>
<td>ri</td>
<td>0.01</td>
<td>0.14</td>
<td>0.85</td>
</tr>
<tr>
<td>rvt</td>
<td>0.10</td>
<td>0.30</td>
<td>0.60</td>
</tr>
<tr>
<td>vasc</td>
<td>0.15</td>
<td>0.25</td>
<td>0.60</td>
</tr>
<tr>
<td>scl</td>
<td>0.05</td>
<td>0.05</td>
<td>0.90</td>
</tr>
<tr>
<td>cgae</td>
<td>0.40</td>
<td>0.35</td>
<td>0.25</td>
</tr>
<tr>
<td>mh</td>
<td>0.05</td>
<td>0.05</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Utilities:

- improved: 5000
- unchanged: -2500
- worse: -5000
Modeling test: transfemoral arteriography

<table>
<thead>
<tr>
<th></th>
<th>p(clot)</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>atn</td>
<td>0.01</td>
<td>500</td>
</tr>
<tr>
<td>farf</td>
<td>0.01</td>
<td>800</td>
</tr>
<tr>
<td>obstr</td>
<td>0.01</td>
<td>500</td>
</tr>
<tr>
<td>agn</td>
<td>0.01</td>
<td>500</td>
</tr>
<tr>
<td>cn</td>
<td>0.01</td>
<td>500</td>
</tr>
<tr>
<td>hs</td>
<td>0.01</td>
<td>800</td>
</tr>
<tr>
<td>pye</td>
<td>0.01</td>
<td>500</td>
</tr>
<tr>
<td>ae</td>
<td>0.03</td>
<td>800</td>
</tr>
<tr>
<td>ri</td>
<td>0.85</td>
<td>500</td>
</tr>
<tr>
<td>rvt</td>
<td>0.50</td>
<td>500</td>
</tr>
<tr>
<td>vasc</td>
<td>0.01</td>
<td>500</td>
</tr>
<tr>
<td>scl</td>
<td>0.01</td>
<td>500</td>
</tr>
<tr>
<td>cgae</td>
<td>0.01</td>
<td>500</td>
</tr>
<tr>
<td>mh</td>
<td>0.01</td>
<td>500</td>
</tr>
</tbody>
</table>
How large is the tree?

- Infinite, or at least \((27+3+8)^{(27+3+8)}, \sim 10^{60}\)
- What can we do?
 - Assume any action is done only once
 - Order:
 - questions
 - tests
 - treatments
- \(27! \times 4 \times 3 \times 2 \times 8, \sim 10^{30}\)
- Search, with a *myopic evaluation function*
 - like game-tree search; what’s the static evaluator?
 - Measure of certainty in the probability distribution
How many questions needed?

• How many items can you distinguish by asking 20 (binary) questions? 2^{20}
• How many questions do you need to ask to distinguish among n items? $\log_2(n)$
• Entropy of a probability distribution is a measure of how certainly the distribution identifies a single answer; or how many more questions are needed to identify it
Entropy of a distribution

\[H_i(P_1, \ldots, P_n) = \sum_{j=1}^{n} - P_j \log_2 P_j \]

For example:
- \(H(.5, .5) = 1.0 \)
- \(H(.1, .9) = 0.47 \)
- \(H(.01, .99) = 0.08 \)
- \(H(.001, .999) = 0.01 \)

- \(H(.33, .33, .33) = 1.58 (!) \)
- \(H(.005, .455, .5) = 1.04 \)
- \(H(.005, .995, 0) = 0.045 \)

(!) -- should use \(\log_n \)
Interacting with ARF in 1973

Question 1: What is the patient's age?
1 0-10
2 11-30
3 31-50
4 51-70
5 Over 70
Reply: 5

The current distribution is:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>FARF</td>
<td>0.58</td>
</tr>
<tr>
<td>IBSTR</td>
<td>0.22</td>
</tr>
<tr>
<td>ATN</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Question 2: What is the patient's sex?
1 Male
2 Pregnant Female
3 Non-pregnant Female
Reply: 1

...
ARF in 1994

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ATN</td>
<td>0.000</td>
</tr>
<tr>
<td>FARF</td>
<td>0.006</td>
</tr>
<tr>
<td>OBSTR</td>
<td>0.966</td>
</tr>
<tr>
<td>AGN</td>
<td>0.000</td>
</tr>
<tr>
<td>CN</td>
<td>0.000</td>
</tr>
<tr>
<td>HS</td>
<td>0.000</td>
</tr>
<tr>
<td>PVE</td>
<td>0.027</td>
</tr>
<tr>
<td>AE</td>
<td>0.000</td>
</tr>
<tr>
<td>RI</td>
<td>0.000</td>
</tr>
<tr>
<td>RVT</td>
<td>0.000</td>
</tr>
<tr>
<td>VASC</td>
<td>0.000</td>
</tr>
<tr>
<td>SCL</td>
<td>0.000</td>
</tr>
<tr>
<td>CGAE</td>
<td>0.000</td>
</tr>
<tr>
<td>MH</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Select a question to explore:

- Pyuria: 0.14
- Bacteriuria: 0.17
- Urine Specific Gravity: 0.21
- Symptoms Of Bladder Obstruction: 0.22
- Casts In Urine Sediment: 0.22
- Flank Pain: 0.23
- Urine Sodium: 0.23
- Hematuria: 0.23
- History Of Proteinuria: 0.24
- Skin Intestinal Or Lung Lesions: 0.24
- Strep Infection Within Three Weeks: 0.24
- Recent Surgery Or Trauma: 0.24
- Papilledema: 0.24
- Ischemia Of Extremities Or Aortic Aneurysm: 0.24
- Exposure To Nephrotoxic Drugs: 0.24
- Disturbance In Clotting Mechanism: 0.24
- Jaundice Or Ascites: 0.24
- Transfusion Within One Day: 0.24
- Atrial Fibr Or Recent Mi: 0.24
- History Of Prolonged Hypotension: No

Pyuria

- >30: 0.074
- 5-30: 0.146
- <5: 0.780
Local Sensitivity Analysis

Acute Renal Failure Program

<table>
<thead>
<tr>
<th>Variable</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATN</td>
<td>0.249</td>
</tr>
<tr>
<td>FARF</td>
<td>0.398</td>
</tr>
<tr>
<td>OBST</td>
<td>0.100</td>
</tr>
<tr>
<td>AGN</td>
<td>0.100</td>
</tr>
<tr>
<td>CN</td>
<td>0.020</td>
</tr>
<tr>
<td>HS</td>
<td>0.005</td>
</tr>
<tr>
<td>PYE</td>
<td>0.010</td>
</tr>
<tr>
<td>AE</td>
<td>0.003</td>
</tr>
<tr>
<td>RI</td>
<td>0.002</td>
</tr>
<tr>
<td>RVT</td>
<td>0.002</td>
</tr>
<tr>
<td>VASC</td>
<td>0.050</td>
</tr>
<tr>
<td>SCL</td>
<td>0.002</td>
</tr>
<tr>
<td>CGAE</td>
<td>0.030</td>
</tr>
<tr>
<td>MH</td>
<td>0.030</td>
</tr>
</tbody>
</table>

Kidney Size

<table>
<thead>
<tr>
<th>Size</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>0.093</td>
</tr>
<tr>
<td>Normal</td>
<td>0.768</td>
</tr>
<tr>
<td>Large</td>
<td>0.127</td>
</tr>
<tr>
<td>Very Large</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Commit

Commit 0.95 Dec. Anal.
Case-specific Likelihood Ratios

Acute Fulminant Pyelonephritis W/O Obstr

Pyuria
- >30
- 5-30
- <5

Casts In Urine Sediment
- Wbc
- Hy Gran >8
- Hy Gran 3-8
- Tubular Cell
- None Or Hy Gran 0-2
- Fatty
- Rbc Hb

Bacteriuria
- High Colony Counts
- Sterile

History Of Proteinuria
- Yes
- No

Urine Specific Gravity
- 1.001-1.007
- 1.008-1.018
- >1.018
Therapy Planning Based on Utilities

The following facts are known about this patient:
- Age: Over 70
- Sex: Male
- Blood Pressure At Onset: Moderately Elevated
- Urine Volume: 50-400 Cc Day
- Kidney Size: Large
- Large Fluid Loss Preceding Onset: No
- Proteinuria: Zero
- History Of Prolonged Hypotension: No

This leads to the probability distribution over the diseases:
- ATN: 0.000
- FAF: 0.006
- OBSTRA: 0.956
- AGN: 0.000
- CN: 0.000
- HS: 0.000
- PVE: 0.027
- AE: 0.000
- RI: 0.000
- RUT: 0.000
- URSC: 0.000
- SCL: 0.000
- CAGE: 0.000
- MH: 0.000

Plans for further testing and treatment (in descending value order) are:
- Calculating full plan...
- Determining best plan...

Plan number 1:
- Therapy SURGERY-FOR-URINARY-TRACT-OBSTRUCTION has ev=2862.9 (v=2862.9)

Plan number 2:
- Action RETROGRADE-PVELOGRAPHY, with possible outcomes giving ev=2400.1:
 - Outcome 0 (OBSTRUCTION), with p=0.9569
 Best decision gives ev=2521.8
 - Therapy SURGERY-FOR-URINARY-TRACT-OBSTRUCTION has ev=2621.8 (v=3122.3)
 - Outcome 1 (NO-OBSTRUCTION), with p=0.0431
 Best decision gives ev=2525.9
 Therapy ANTIBIOTICS has ev=2525.9 (v=-1025.3)

Plan number 3:
- Action TRANSFEMORAL-ARTERIOGRAPHY, with possible outcomes giving ev=2361.0:
 - Outcome 0 (CLOT), with p=0.0100
 Best decision gives ev=2359.4
 Therapy SURGERY-FOR-URINARY-TRACT-OBSTRUCTION has ev=2359.4 (v=2861.3)
 - Outcome 1 (NO-CLOT), with p=0.9900
 Best decision gives ev=2351.0
 Therapy SURGERY-FOR-URINARY-TRACT-OBSTRUCTION has ev=2351.0 (v=2862.9)

Plan number 4:
- Action BIOPSY, with possible outcomes giving ev=1862.8:
Assumptions in ARF

• Exhaustive, mutually exclusive set of diseases
• Conditional independence of all questions, tests, and treatments
• Cumulative (additive) disutilities of tests and treatments
• Questions have no modeled disutility, but we choose to minimize the number asked anyway