Integrating Data, Models, and Reasoning in Critical Care

Funding: NIBIB R01 EB001659

MIMIC II

- Explosion of information in the ICU: “data overload”, complicated by:
 - Scattered sources (paper, computers, images...)
 - False alarms, artifacts
 - Lack of logical organization

- The complex, multiparameter, dynamic data streams may well reflect underlying physiologic changes, BUT patterns are difficult or impossible to recognize:
 - Early warning signs of impending physiologic change may be missed or unrecognizable

- Engineering Opportunity:
 - Utilize the rich and detailed streams of multi-parameter data to:
 - Interpret pathophysiologic scales
 - Track patient state over time
 - Predict impending clinical changes

MIMIC II ICU Database

- Waveforms, numeric trends, alarms from bedside monitor network
- Clinical data from bedside workstation network
- Hospital archives
- Additional clinical data, discharge summaries, ICD-9 codes, POE, etc.

MIMIC II Contents (1)

- Clinical Data for entire ICU stay
 - Hourly physiologic measures
 - Laboratory results
 - Fluid balance
 - IV medications
 - Ventilator settings
 - Demographics
 - ICD-9 codes
 - Physician orders
 - Reports: radiology, echo, ECG
 - Nurse progress notes
 - Discharge summaries
 - etc.

MIMIC II Contents (2)

- Continuous Physiologic Data
 - Waveforms (sampled @ 125 Hz)
 - Waveforms with IV Medication Record
 - Minute-by-minute time series of physiological measurements (trends)

Status – April 2009
(At initial public release)

- ICU admission records - 33,286 (2001 – 2007)
 - 25,779 adults
 - 7,507 neonates
- Distribution (adults)
 - MICU - 38%
 - SICU – 26%
 - CSRU – 20%
 - CCU – 16%
- Records with waveforms / trends – 2,430
- Database size ~ 11B
“Open” MIMIC II

- Over 5,000 waveform records have been placed on PhysioNet - durations from days to several weeks. Free access to all.
- Full MIMIC II database now freely available subject only to a Data Use Agreement.

Some projects so far

- Mortality prediction
- Sepsis prediction
- Hemodynamic instability
- Hypoglycemia prediction
- False alarm reduction
- Deidentification
- Prediction of fluid requirement ...

Bayesian network model predicting maintenance fluid requirement on day two in the ICU.

Prediction of fluid requirement

- Selected patients similar to age, sex, severity, ... security, score and co-occurrence.
- Patients and clinical scenarios, specific model.
- ICU stunning.
- Predicted range of fluid requirement, e.g. 2,272-3,661 mL.

How do I get in?

- Contact us: maurov@mit.edu
decot@mit.edu
- Do COUHES
- Sign up: www.physionet.org/cgi-bin/request
http://www.physionet.org/physobank/database/mimicdb
- Use web portal, or come to our lab (E25-505)
Patient variables evaluated as possible predictors of maintenance fluid requirement.

<table>
<thead>
<tr>
<th>Agent characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maintenance variables</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid requirement</td>
<td></td>
</tr>
<tr>
<td>Metabolic rate</td>
<td></td>
</tr>
<tr>
<td>Cardiac output</td>
<td></td>
</tr>
<tr>
<td>Renal function</td>
<td></td>
</tr>
<tr>
<td>Cardiac output</td>
<td></td>
</tr>
<tr>
<td>Renal function</td>
<td></td>
</tr>
</tbody>
</table>

*Note: *Variables that alter when expressed with fluid rate

- Vasoconstriction

*Note: *Variables that affect severity of disease

- Cardiac output
- Metabolic rate
- Renal function
- Cardiac output
- Metabolic rate
- Renal function
- Cardiac output
- Metabolic rate