Admin: Reminder - Quiz in class 10/19

Today: Greedy algorithms & MST
(minimum spanning trees)

- Defs
- Greedy choice theorem for MST
- Prim's alg
- Kruskal's alg
 (Union Find data structure)
Review:

Undirected graph $G = (V, E)$
- $V =$ vertices
- $E =$ edges (unordered pairs of vertices)

Assume adjacency-list representation:
- Give, for each vertex u, list $\text{Adj}[u]$ of u's neighbors $= \{ v \mid (u, v) \in E \}$

![Graph Example](image)

$\text{Adj}[c] = \{ a, d \}$

Weighted undirected graph: $G = (V, E)$
- with weight function $w: E \to \mathbb{R}$

Tree: graph with no cycles & is connected

Spanning Tree: (of graph $G = (V, E)$)
- a subset $T \subseteq E$ that forms a tree
- that spans graph (touches all vertices)

Fact: Spanning tree has $|V| - 1$ edges.
Minimum Spanning Tree (MST) Problem:

Given: undirected connected graph \(G = (V, E) \)
Find: a spanning tree \(T \subseteq E \)
of minimum weight \(w(T) = \sum_{e \in T} w(e) \)

Example:

![Graph representing the minimum spanning tree](image)

Minimum = MST

Many applications:

For example, connecting cities with minimum amount of fiber-optic cable.

Fact: If there are edge-weight ties, MST may not be unique.

(But no ties \(\Rightarrow \) MST is unique)
Trying to find

best subset of a given set

that is legal

(min weight) (T) (CE) (connected & acyclic)
i.e. spanning tree

"Greedy approach" may work: pick elements of T one after another according to some local "greedy" (myopic) method.

This works if:

(a) you can identify easily (in "greedy" manner) some edge that is in an MST
(b) after committing to that edge, remaining problem has same form.

(\equiv "optimal substructure")
In our example, suppose we had reason to believe that $e = (u, v)$ was in some optimal MST T^*.

We can then "contract" e to make a new graph $G' = G/e = (V', E')$ with "supernode" uv

$$w((g, uv)) = \min(w((g, u)), w((g, v)))$$

$$= \min(14, 8) = 8$$

(Node inside supernode already connected internally, so connecting to u as good as connecting to v; take cheapest. But keep track that (g, uv) "comes from" (g, v).)
Let T' be MST for $G'=(V',E') = G/e$

Claim: $T = T' \cup \{e\}$ is MST for G

given that e is in some MST T^* for G
and where edges in T' interpreted in
"pre-contracted" form.

Proof:

T^*/e is spanning tree of G'.

$\Rightarrow w(T') \leq w(T^*/e)$

$\Rightarrow w(T) = w(T') + w(e)$

$\leq w(T^*/e) + w(e)$

$= w(T^*)$

$\Rightarrow T$ is MST
Thus, if we have procedure for picking an edge e we know to be in some MST, we can commit to it, & solve remaining problem on contracted graph $G' = G/e$.

Grow T edge by edge, Supernodes correspond to connected components so far.
Def. A cut of $G = (V, E)$ is a partition of V into two nonempty subsets:

\[V = S \cup T \]

\[S \neq \emptyset \]
\[T \neq \emptyset \]
\[S \cap T = \emptyset \]

What is our "trick" for being able to make greedy choice (pick an edge e that is in some MST T^*)?

Theorem: Let (S, T) be any cut of $G = (V, E)$.

Let e be any edge crossing cut (i.e., $e=(u,v)$ where $u \in S$ & $v \in T$) of minimum weight.

Then $(\exists$ MST $T^*)$ $e \in T^*$.

(Illustrate on our example. Note that S could contain a single vertex, but need not.)
Proof:
- Let T be an MST for G.
- If $e \in T$ we are done (take $T^* = T$).

 So, suppose $e \notin T$.
- Let $e = (u, v)$ ($u \in S$, $v \in T$)
- There is path from u to v in T
- Let $e' = (u', v')$ be first edge on path crossing cut.
 (path must cross cut, since $u \in S$, $v \in T$)
- Let $T^* = T \setminus \{e'\} \cup \{e\}$
- T^* is a spanning tree of G
 (Any path that used $e' \in T$
 can be restructured to use
 e instead.)
- $w(e) \leq w(e')$
- $w(T^*) = w(T) - w(e') + w(e) \leq w(T)$

$\Rightarrow T^*$ is MST too.
Prim's Algorithm:

Grow single supernode until it includes all of V:

\[S = \{v_0\} \quad \text{arbitrary seed point} \]
\[T = \emptyset \quad \text{empty tree} \]

while \(S \neq V \):

\[\text{Let } e \text{ be cheapest edge crossing from } S \text{ to } V - S \]
\[e = (u, v) \]
\[\text{Add } v \text{ to } S \]
\[\text{Add } e \text{ to } T \]

stop: \(T \) is MST

Correctness: Follows from previous theorem

(By induction, \(T \) is always subset of some MST \(T^* \))
Efficient Implementation:

- Keep priority queue \(Q \) on \(V - S \),
 where \(v.\text{key} = \min(w(e)) \) where \(e = (u, v) u \in S \)
 (or \(\infty \) if there are no such edges)
 \(Q \) supports Extract-Min & Decrease-Key

- Initialize \(Q \) with \(V \)
 initialize \(v.\text{key} = \infty \) (except \(v_0.\text{key} = 0 \))

- while \(Q \neq \emptyset \):
 \(v = \text{Extract-Min}(Q) \)
 for \(x \in \text{Adj}[v] \):
 if \(x \in Q \land w(v, x) < x.\text{key} \):
 \(x.\text{key} = w(v, x) \)
 Decrease-Key \((Q, x)\)
 \(x.\text{parent} = v \)

return \(\{(v, v.\text{parent}) : v \in V - \{v_0\}\} \) as MST \(T \)
Example:
\[\text{Time:} \]
\[= \Theta(v) \cdot T_{\text{Extract-Min}} \]
\[+ \Theta(E) \cdot T_{\text{Decrease-key}} \]

<table>
<thead>
<tr>
<th>Priority queue</th>
<th>(T_{\text{Extract-Min}})</th>
<th>(T_{\text{Decr.-key}})</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(v))</td>
<td>(O(1))</td>
<td>(O(v^2))</td>
</tr>
<tr>
<td>binary heap</td>
<td>(O(\log v))</td>
<td>(O(\log v))</td>
<td>(O(E \log v))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(\log v)) \text{ amortized}</td>
<td>(O(1))</td>
<td>(O(E + V \log v))</td>
</tr>
</tbody>
</table>
Kruskal's MST Algorithm:

- grows forest instead of single tree, until trees get connected into single tree
- $T = \emptyset$
 - sort E into increasing order by weight
 - for each edge $e = (u, v)$ in turn:
 - if u & v in different components of T
 - add e to T
 - (merge their components)

- Correctness: By Theorem cheapest edge out of any vertex is in some MST. Cheapest edge out of any component is also in some MST.
Union-Find problem (Chap 21):

- maintain a collection of disjoint sets

- Operations:
 - Make-Set(x) — create set \(\{x\} \)
 - Find-Set(x) — return set containing \(x \)
 - Union(x, y) — merge sets containing \(x, y \)
 (or destroy old sets)

- Best alg:
 - Make-Set(x)
 - \(x \)
 - Find-Set(x)
 \[\Rightarrow \varepsilon \]
 (path compression)
 - \(\Rightarrow \)
 add shortcut
 to replace upward links
 from \(x \) (\& its ancestors) to \(\varepsilon \)
 - Union(x, y):
 \[x \rightarrow y \]
 (or reverse, depending
 on "ranks" of \(x, y \))
Running Time: (Union-Find)

$\Theta(\alpha(n))$ amortized cost/opn

where $\alpha(n)$ is extremely slowly growing

(inverse of Ackerman's function) $\alpha(n) = \Theta(1)$ "almost".

Running Time (Kruskal):

$T_{\text{Sort}}(E) + \Theta(V) \cdot T_{\text{make set}} + \Theta(E) \cdot T_{\text{find set}} + \Theta(V) \cdot T_{\text{union}}$

if weights are integers & small, can sort in time $\Theta(E)$ & beat Prim

But in general $\Theta(E \log E)$

Best MST algorithm:

$O(V+E)$ expected time (randomized alg)

[Karger, Klein, Tarjan 1993]