Today: All-pairs shortest paths
- dynamic programming
- matrix multiplication
- Floyd-Warshall algorithm
- Johnson's algorithm
- difference constraints

Recall: single-source shortest paths [6.006] Chapter 24
- given directed graph $G = (V,E)$, vertex set V, & edge weights $w: E \to \mathbb{R}$
- find $s(s,v) =$ shortest-path weight $s \to v \ \forall v \in V$

<table>
<thead>
<tr>
<th>Situation</th>
<th>Algorithm</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>unweighted $(w=1)$</td>
<td>BFS</td>
<td>$O(V+E)$</td>
</tr>
<tr>
<td>nonneg. edge weights</td>
<td>Dijkstra</td>
<td>$O(E+V \log V)$</td>
</tr>
<tr>
<td>general</td>
<td>Bellman-Ford</td>
<td>$O(VE)$</td>
</tr>
<tr>
<td>acyclic graph (DAG)</td>
<td>topological sort</td>
<td>$O(V+E)$</td>
</tr>
<tr>
<td></td>
<td>+1 pass Bellman-Ford</td>
<td></td>
</tr>
</tbody>
</table>

all of these results are the best known
All-pairs shortest paths:
given edge-weighted graph \(G=(V,E,w) \),
find \(S(uv) \) for all \(u,v \in V \)

\[
\begin{array}{cccc}
\text{situation} & \text{algorithm} & \text{time (obvious)} & \text{dense} \\
\text{unweighted} & |V| \times \text{BFS} & O(VE) & \frac{E=O(V^2)}{O(V^3)} \\
\text{nonneg. weights} & |V| \times \text{Dijkstra} & O(VE+V^2 \log V) & O(V^3) \\
\text{general} & |V| \times \text{B-F} & \left\{ \begin{array}{c}
O(V^2 E) \\
O(VE+V^2 \log V)
\end{array} \right. & O(V^3) \\
\text{general} & \text{TODAY} & O(VE+V^2 \log V) & O(V^3)
\end{array}
\]

these results (except third) are also best known — don’t know how to beat \(|V| \times \text{Dijkstra} \)

Assume \(V=\{1,2,\ldots,n^3\} \) so \(|V|=n^3\) today.
Method I

Dynamic program (ℓ1): \(O(\nu^4) \)

1. subproblem \(d_{uv}^{(m)} = \text{weight of shortest path } u \to v \) using \(\leq m \) edges
2. guessing = what's the last edge \((x,v)\)?
3. \(d_{uv}^{(m)} = \min(d_{ux}^{(m-1)} + w(x,v) \text{ for } x \in V) \)
4. \(d_{uv}^{(0)} = \infty \text{ if } u = v \)
 \(= 0 \text{ else} \)
5. if no neg.-weight cycles then (by B-F analysis) shortest path is simple \(\Rightarrow S(u,v) = d_{uv}^{(n-1)} = d_{uv}^{(n)} = \ldots \) (neg.-weight cycle \(\iff d_{vv}^{(n-1)} < 0 \text{ for some } v \in V \))

Time: \(V^3 \) subproblems \(\times \) \(V \) choices \(\times \) \(O(1) \) time/ch.

\(= O(V^4) \) - no better than \(\nu \times \text{Bellman-Ford} \) \(O(\nu^2 E) \)

& worse if \(E \ll \nu^2 \)

Bottom-up via relaxation steps: (like Dijkstra & Bellman-Ford)

for \(m \) in range \((1, n) \):
 for \(u \) in \(V \):
 for \(v \) in \(V \):
 for \(x \) in \(V \):
 if \(d_{uv} > d_{ux} + w_{xv} \):
 \(d_{uv} = d_{ux} + w_{xv} \) \(3 \) relaxation step

\(\hat{\nu} \) subpath of a shortest path is a shortest path

\(\hat{\nu} \) \(\nu \)

\(\infty \)
Matrix multiplication: (recall)
given $n \times n$ matrices A and B, compute $C = A \cdot B$:
$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
- $O(n^3)$ via standard algorithm
- $O(n^{2.807})$ via Strassen's algorithm
- $O(n^{2.376})$ via Coppersmith-Winograd algorithm

Connection to shortest paths:
- define $\oplus = \min$ and $\circ = +$
- then $C = A \oplus B$ is $c_{ij} = \min_k (a_{ik} + b_{kj})$
- define $D^{(m)} = (d_{ij}^{(m)})$, $W = (w(i,j))$, $V = \{1, 2, \ldots, n^3\}$
 \Rightarrow $D^{(m)} = D^{(m-1)} \circ W$ (by \oplus above)
 $$= W^m$$
 where $W^0 = \begin{pmatrix} 0 & 1 & \cdots & 0 \\
1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 \end{pmatrix}$

$[W^m$ makes sense because \oplus is associative, which follows from $(R, \min, +)$ being closed semiring$]$}

Matrix multiplication algorithm:
- $n-2$ multiplications $\Rightarrow O(n^4)$ time (still no better)
- repeated squaring: $(W^2)^2 \cdots = W^{2^{\log_2 n}} = W^{n-1}
 $$= (S(i,j))$ if no negative-weight cycles
- time: $O(n^3 \log n) = \Theta(n^3 \log \log n)$
- neg.-weight cycles \Rightarrow neg. diagonal entries
- can't use Strassen etc. \circ (no negation)
Special case where we can use Strassen:

Transitive closure:
\[
t_{ij} = \begin{cases}
1 & \text{if there's a path } i \rightarrow j \\
0 & \text{else}
\end{cases}
\]
\[
= \begin{cases}
\text{is } S(i,j) < \infty ? & \Rightarrow \text{special case of APSP} \\
\end{cases}
\]
\[
= O(n^{2.376} \log n) \text{ time}
\]

Can also compute mod \(p \)

Floyd-Warshall algorithm: faster dynamic program

1. **Subproblem** \(c_{uv}^{(k)} = \text{weight of shortest path } u \rightarrow v \) whose intermediate vertices \(\in \{1, 2, \ldots, k\} \)

\[
\overset{\text{i-->s}}{\overset{\text{sk-->ek}}{\cdots}} \overset{\text{sk-->v}}{\text{sk-->e}} \overset{\text{v-->s}}{\text{v-->e}} \overset{\text{v-->1}}{\text{v-->2}} \overset{\text{v-->n}}{\text{v-->n}}
\]

2. **Guessing** = does shortest path use vertex \(k \)?

3. \(c_{uv}^{(k)} = \min (c_{uv}^{(k-1)}, c_{uk}^{(k-1)} + c_{kv}^{(k-1)}) \)

4. \(c_{uv}^{(0)} = w(u, v) \)

5. \(S(u, v) = c_{uv}^{(n)} \)

Time: \(O(V^3) \) subproblems \(\times 2 \) choices \(\times O(1) = O(V^3) \)

Bottom up via relaxation:

\[
C = (w(u, v))
\]

for \(k = 1, 2, \ldots, n \):

for \(u \) in \(V \):

for \(v \) in \(V \):

if \(c_{uv} > c_{uk} + c_{kv} \):

\(c_{uv} = c_{uk} + c_{kv} \) 3 "relaxation" again (with a twist)

\(\Rightarrow \) again OK to omit superscripts

Simple & efficient in practice
Johnsons algorithm:
1. find function \(h: V \rightarrow \mathbb{R} \) such that \(\omega_h(u,v) = \omega(u,v) + h(u) - h(v) \geq 0 \) for all \(u,v \in V \) or determine that a negative-weight cycle exists
2. run Dijkstras algorithm on \((V,E,\omega_h) \) from every source vertex \(S \in V \)
 \(\Rightarrow \) get \(\delta_h(u,v) \) for all \(u,v \in V \)
3. claim \(\delta(u,v) = \delta_h(u,v) - h(u) + h(v) \)

Proof of claim:
- look at any \(u \to v \) path \(p \) in \(G \)
- say \(p \) is \(V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_k \)

\[\Rightarrow \omega_h(p) = \sum_{i=1}^{k} \omega_h(V_{i-1} \rightarrow V_i) \]

\[= \sum_{i=1}^{k} \left[\omega(V_{i-1} \rightarrow V_i) + h(v_{i-1}) - h(v_i) \right] \]

\[= \sum_{i=1}^{k} \omega(V_{i-1} \rightarrow V_i) + h(v_0) - h(v_k) \text{ telescoping} \]

\[= \omega(p) + h(u) - h(v) \]
- so all \(u \to v \) paths change in weight by the same offset \(+h(u) - h(v) \)

\(\Rightarrow \) shortest path is preserved (but offset) \(\square \)
How to find h? \(\text{(1)} \)
\[
W_h(u,v) = w(u,v) + h(u) - h(v) \geq 0
\]
\[
\iff h(v) - h(u) \leq w(u,v)
\]
\[
\Rightarrow \text{SYSTEM OF DIFFERENCE CONSTRAINTS} \ h(x) = \text{vars}
\]

Theorem: if \((V,E,w) \) has a negative-weight cycle then no solution to difference constraints

Proof: say \(v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \rightarrow v_0 \) is neg. weight
\[
\begin{align*}
& h(v_1) - h(v_0) \leq w(v_0, v_1) \\
& h(v_2) - h(v_1) \leq w(v_1, v_2) \\
& \quad \vdots \\
& h(v_k) - h(v_{k-1}) \leq w(v_{k-1}, v_k) \\
& h(v_0) - h(v_k) \leq w(v_k, v_0)
\end{align*}
\]
then sum: \(0 \leq w(\text{cycle}) < 0 \) \(\blacksquare \)

Theorem: if \((V,E,w) \) has no negative-weight cycle then can solve difference constraints

Proof: add to \(G \) a new vertex \(s \)
\& add weight-0 edges \((s,v)\) for all \(v \in V \)
- introduce no negative-weight cycles
- \(s \rightarrow v \) path now exists
\(\Rightarrow S(s,v) \) is finite for all \(v \in V \)
- assign \(h(v) = S(s,v) \)
\[
\begin{align*}
h(v) - h(u) & \leq w(u,v) \iff S(s,v) - S(s,u) \leq w(u,v) \\
\Rightarrow S(s,v) & \leq S(s,u) + w(u,v) \text{ TRIANGLE INEQUALITY} \quad \blacksquare
\end{align*}
\]
Alternate reduction: for every \((u,v) \in E\),
add \((u,v)\) with weight \(M' = M \cdot \text{largest } w_l\).

⇒ Strongly connected, still no neg.-weight cycles

Analysis:
1. = Bellman-Ford from \(s\)

 \[O(VE) \]

2. + reweight all edges

 \[O(E) \]

3. = \(|V| \times \text{Dijkstra} \)

 \[O(VE + V^2 \log V) \]

Also: Bellman-Ford can solve any system of difference constraints \(\{x-y \leq c_3\}\)
(or report unsolvable)
in \(O(VE)\) where \(V=\text{variables}, E=\text{constraints}\)

Exercise: Bellman-Ford minimizes \(\max_i x_i - \min_i x_i\)

Applications to real-time programming
multimedia scheduling
temporal reasoning

Bounds on:
- duration
- gap
- synchrony

E.g. \(LB \leq t_{\text{end}} - t_{\text{start}} \leq UB\)
\(0 \leq t_{\text{start2}} - t_{\text{end1}} \leq 3\)
\(|t_{\text{start1}} - t_{\text{start2}}| \leq 3\) or 0