Outline: Network Flow (aka "Max Flow") [Chapter 26]

- Definitions & notation
 - Flow network
 - Max flow problem
 - Residual network
 - Net flows
 - Cuts
- Max-flow min-cut theorem
 - Ford-Fulkerson alg
 - Edmonds-Karp alg

Def: A flow network is a directed graph \(G = (V, E) \)

with two distinguished vertices: a source \(S \) and a sink \(T \),

and a nonnegative capacity \(c(u, v) \) for each edge \((u, v) \in E \).

[Assume \(c(u, v) = 0 \) if \((u, v) \notin E \).] [Assume no "self-loops".]

Example:

```
S       A       B       C       T
\( 1 \) --\( 2 \) ----\( 4 \) --\( 2 \) ----\( 1 \)
\( 4 \) --\( \quad \) --\( 4 \)
        \quad     \quad     \quad
```

"Rate of flow"

\(c(u, v) \) = capacity of edge in units of stuff/unit of time

- cars/hour, amps, gallons/sec

[Want to maximize steady-state flow of stuff from \(S \) to \(T \)

that: (a) obeys capacity constraints, and

(b) has flow-in = flow-out at intermediate nodes (conservation).

[Like Kirchhoff's current law]

Def: A positive flow on \(G \) is a function \(p : V \times V \rightarrow \mathbb{R} \)

s.t.

- [Capacity constraint] \(0 \leq p(u, v) \leq c(u, v) \) (\(\forall u, v \in V \))
- [Flow conservation] \((\forall u \in V \setminus \{S, T\}) \)

\[\sum_{v \in V} p(u, v) - \sum_{v \in V} p(v, u) = 0 \]

(flow out) (flow in)
Def: The value of a flow is net flow out of source:
\[|p| = \sum_{v \in V} p(s,v) - \sum_{v \in V} p(v,s) \]

Def: Maximum-flow problem: Given a flow network, find a flow of maximum value.

Example: (cont)

```
\[ \text{Notation:} \]
\[ p(u,v)/c(u,v) \]
\[ \not\text{ division!} \]
\[ \text{1 is separator} \]
```

Important problem!

Many other problems are special cases, e.g.

- matching
 (assignment)

```
\[ \text{find max \# of} \]
\[ \text{disjoint compatible pairs} \]
\[ BD, CE, AF \]
\[ \text{[hint at method: adding s \& t]} \]
```

Def: notations: net flow (instead of positive flow)

Summation notation

Define: net flow function \(F \) is net flow between vertices:

\[f(u,v) = p(u,v) - p(v,u) \]

Fact: (Skew-symmetry) \(f(u,v) = -f(v,u) \)
Example:

\[
\begin{array}{c}
\begin{bmatrix}
\text{U} & \text{V}
\end{bmatrix}
\end{array}
\]

Normally either \(p(u,v) = 0 \) or \(p(v,u) = 0 \) (don't cycle stuff)

\[f(u,v) = 0 \Rightarrow \begin{cases} p(u,v) = f(u,v) \\ p(v,u) = 0 \\ f(u,v) \leq c(u,v) \end{cases} \]

\[f(u,v) \leq 0 \Rightarrow \begin{cases} p(v,u) = -f(u,v) = f(v,u) \\ p(v,u) = 0 \\ f(v,u) = -f(u,v) \leq c(v,u) \end{cases} \]

Enough to work with \(f \) only (not \(p \)), and may have constraints:

- \(f(u,v) = -f(v,u) \) \(\quad (\forall u,v) \) \[\text{skew-symmetric} \]
- \(f(u,v) \leq c(u,v) \) \(\quad (\forall u,v) \) \[\text{capacity} \]

For conservation use summation notation:

\[
f(u,X) = \sum_{v \in X} f(u,v)
\]

\[f(X,v) = \sum_{u \in X} f(u,v) \quad X \subseteq V \]

\[f(X,Y) = \sum_{u \in X} \sum_{v \in Y} f(u,v) \quad X, Y \subseteq V \]

Flow conservation \(\equiv (\forall u \in V - \{s,t\}) f(u,V) = 0 \)

\(|f| = \text{value of flow } f \)

\[= \text{net flow out of } s \]

\[= f(s,V) \]
Facts:
1. \(f(x, x) = 0 \) for all \(x \in V \)
2. \(f(x, y) = -f(y, x) \) for all \(x, y \in V \)
3. \(f(x \cup y, z) = f(x, z) + f(y, z) \) if \(X \cap Y = \emptyset \)

[by s.s. \(f(u, v) = -f(v, u) \)]

Theorem: \(|f| = f(V, t) \)

"Net flow out at s" = "net flow into t"

Proof:
\[
|f| = f(\{s\}, V) = f(V, V) - f(V - s, V) = f(V, V - s) = f(V, t) + f(V, V - s - t) = f(V, t)
\]

[Note: omit braces]

[Check on example flow network]

- We now introduce notion of a cut, so we can state max-flow/min-cut theorem, which allows us to know when we have a max flow.

- **Def.** A cut is a partition \((S, T)\) of \(V \)

 \[\text{i.e. } S \cup T = V \text{ and } S \cap T = \emptyset \]

 s.t. \(s \in S \) and \(t \in T \).

- **Def.** If \(f \) is a flow, then flow across cut \((S, T)\) is \(f(S, T) \).

Example:

\[
\begin{align*}
S &= \{s, b\} \\
T &= \{a, c, t\} \\
f(S, T) &= 3 + 3 - 2 = 4
\end{align*}
\]
Theorem: \(|f| = f(S,T)\) for any cut \((S,T)\).

Proof: (really rather intuitive: has to cross cut to get from \(s\) to \(t\).)

\[f(S,T) = f(S,V) - f(S,S)\]
\[= f(S,V)\]
\[= f(s,V) + f(S-s,V)\]
\[= f(s,V)\quad \text{[flow conservation } \forall u \in V - \{s,t\} \text{]}\]
\[= |f|\]

Def: The capacity of a cut is \(c(S,T)\).

Example: cut has value \(y + 2 + y = 10\).

Theorem: For any cut \((S,T)\), \(f(S,T) \leq c(S,T)\).

Proof: \(|f| = f(S,T)\)
\[= \sum_{u \in S} \sum_{v \in T} f(u,v)\]
\[\leq \sum_{u \in S} \sum_{v \in T} c(u,v)\]
\[= c(S,T)\]

[Look at other cuts in example.]

[Note: \(c\) is not skew-symmetric!]
So, \(f \) must satisfy various constraints

\[|f| \leq c(S, T) \]

one for each cut. Tightest such constraint is achievable:

Theorem: [Max-flow/min-cut]

\[
\max |f| = \min \text{ cuts } (S, T) c(S, T)
\]

Idea [details next time & proof]:

Given \(f \), can explore edges with excess capacity

using BFS from \(s \).

- If we reach \(t \), \(|f| \) is not maximum
- If we can't reach \(t \), then let

\[
S = \text{reachable vertices} \\
T = V - S
\]

Assert \(|f| = c(S, T) \). (every \(S-T \) edge at capacity)

Example: show \(S = \{ s, A, C \} \quad T = \{ B, t \} \)

\[|f| = f(S, T) = c(S, T) = 4. \]
Outline:
- Review
 - Residual graph, residual capacities, augmenting path
 - Max-flow/min-cut theorem
 - Ford-Fulkerson algorithm $\Theta(|E| \cdot |f^*|)$ [integral capacities]
 - Edmonds-Karp $O(VE^2)$

Review:
- Flow network: $G = (V, E)$, source s, sink t, capacities $c(u, v)$
- Net flow $f(u,v)$: $f(u,v) = c(u,v) - |f| = f(s,v)$
- Cut (S,T): $S \cup T = V$, $S \cap T = \emptyset$, $s \in S$, $t \in T$
- Theorem: $|f| = f(S,T)$ for any cut (S,T)
- Theorem: $|f| \leq \Phi(S,T)$ for any cut (S,T)

Given: Flow network with flow f, how to augment (increase) flow?
Answer: Find $s \to t$ path in residual graph G_f

$\begin{array}{c}
\text{Residual graph } G_f = (V, E_f) \text{ with edges having} \\
\text{strictly positive residual capacities} \\
c_f(u,v) = c(u,v) - f(u,v) > 0 \\
\end{array}$

$\begin{array}{c}
G_f \\
\begin{array}{c}
\text{Lemma: } |E_f| \leq 2|E| \\
\end{array}
\end{array}$
Def: Any path from s to t in G_f is an **augmenting path** in G wrt f.

Flow value can be increased along augmenting path ρ by

$$C_f(\rho) = \min_{(u,v) \in \rho} \{ C_f(u,v) \}$$

Example:

$G = \begin{array}{c}
 \textcircled{5} \rightarrow \textcircled{u} \rightarrow \textcircled{v} \rightarrow \textcircled{w} \rightarrow \textcircled{x} \rightarrow \textcircled{t} \\
\end{array}$

$G_f = \begin{array}{c}
 \textcircled{5} \rightarrow \textcircled{4} \rightarrow \textcircled{2} \rightarrow \textcircled{1} \rightarrow \textcircled{3} \rightarrow \textcircled{t} \\
\end{array}$

$\rho = s \xrightarrow{3/5} u \xrightarrow{2/4} v \xrightarrow{5/5} w \xrightarrow{2/3} x \xrightarrow{2/4} t$

$C_f(\rho) = 2$

$G' = \begin{array}{c}
 \textcircled{5/5} \xrightarrow{4/6} \textcircled{4/6} \rightarrow \textcircled{0/2/3} \rightarrow \textcircled{4/4} \rightarrow \textcircled{t} \\
\end{array}$

(after augmenting $b = 2 \left(\frac{1}{6} \right)$)
Max-flow/min-cut theorem:

The following are equivalent:

1. \(|f| = c(S, T)| \) for some cut \((S, T)\)
2. \(f\) is a max flow
3. \(G_f\) has no augmenting paths.

Proof:

1. \(\Rightarrow 2\): Since \(|f| \leq c(S, T)| \) by theorem, \(f\) is a max flow.

2. \(\Rightarrow 3\): (\(\equiv -3 \Rightarrow -2\))

 If \(G_f\) has an augmenting path, \(f\) is not a max flow.

3. \(\Rightarrow 1\): Suppose \(f\) has no augmenting paths.

 Let \(S = \{v \in V: \exists \text{ path in } G_f \text{ from } s \text{ to } v\}\)

 \(T = V - S\)

 Note: \(s \in S, t \in T\) so \((S, T)\) is a cut

 Consider \(u \in S, v \in T:\)

 \(\Rightarrow\)

 Must have \(c_f(u, v) = 0\) (otherwise \(v \in S\))

 \(\therefore f(u, v) = c(u, v) \quad [\text{since } c_f(u, v) = c(u, v) - f(u, v)]\)

 Sum over all \(u \in S, v \in T\)

 \(\Rightarrow f(S, T) = c(S, T)\)

 \(|f| \quad \square\)
Ford-Fulkerson max-flow alg.

\[
\begin{align*}
\text{while } & \exists \text{ augmenting path } p : \\
& \text{ augment } f \text{ along } p \text{ by } \Delta f(p)
\end{align*}
\]

Can be slow:

- FF algorithm with integral capacities runs in time \(O(E \cdot |f^*|) \)
 where \(|f^*| \) is optimal flow.

\[\text{Theorem: If capacities are integral, then max flow } \uparrow \text{ with integral flow on each edge.}\]

\[\text{PG: FF alg.}\]

Application: e.g., matching

- Can we fix dependence on \(|f^*|\)??

- Yes: find augmenting paths with BFS, \(\text{(i.e., use a shortest aug. path)}\)
 \(\text{with fewest edges)}\)

\[\Rightarrow \text{Edmonds-Karp alg. (EK)} \quad \text{[actually, due to Dinic: their analysis]}\]
Def: Let $\delta_f(s,v) = \text{distance (\# edges) from } s \text{ to } v \text{ in } G_f$.

(Monotonicity)

Lemma: Let $\delta(v) = \delta_f(s,v)$ during EK algorithm. (Changes as we augment flow, of course.) Then $\delta(v)$ never decreases.

Proof:

Case 1: f is flow, and augmented flow is f'.
Let $\delta'(v) = \delta_f(s,v)$, $\delta(v) = \delta_f(s,v)$.
Prove $\delta'(v) \geq \delta(v)$ by induction on $\delta'(v)$.

Base case: $\delta'(v) = 0 \Rightarrow v = s \Rightarrow \delta(s) = 0 \Rightarrow \delta'(v) \geq \delta(v)$.

Inductive case:
Consider BFS path $s \rightarrow u \rightarrow v$ in $G_{f'}$.
Must have $\delta'(v) = \delta'(u) + 1$ and so $\delta'(u) = \delta(u)$ by induction.

Certainly $(u,v) \in E_{f'}$.

Case 1: $(u,v) \in E_f$:
$\delta(v) \leq \delta(u) + 1$ (A-ineq)
$\leq \delta'(u) + 1$ (induction)
$= \delta'(v)$ (BFS)

Case 2: $(u,v) \notin E_f$:

G_f (after):

G_f (before):

How? Any path must have $(v,u) \in E_f$ where p is BF path in G_f.

$G_f: p = \text{add arrow} \text{ (.stem)}$
\[
\delta(v) = \delta(u) - 1 \quad \text{(BFS)}
\]
\[
\leq \delta'(u) - 1 \quad \text{(induction on } \delta', \text{ recall.)}
\]
\[
= \delta'(v) - 2 \quad \text{(BF path)}
\]
\[
< \delta'(v) \quad \blacksquare
\]

Theorem: In EK, # flow augmentations is \(\Theta(VE) \).

Proof: Suppose \(p \) is aug path, & \(\zeta_{G_f}(u,v) = \zeta_{G_f}(p) \) for some \((u,v)\)\(\in\)p.

Then \((u,v)\) is critical and disappears from res. graph after aug.

Ex:

![Graph](image)

First time \((u,v)\) is critical, \(\delta(u) = \delta(u) + 1 \) since \(p \) is BF.

Must wait until \((v,u)\) is on new aug path before \((u,v)\) can be critical again.

Let \(\delta' \) be dist. func. when \((v,u)\) on aug. path. Then

\[
\delta'(u) = \delta'(v) + 1 \quad \text{(BF)} \quad \text{in } G_f,
\]
\[
\geq \delta(v) + 1 \quad \text{(monotonic)}
\]
\[
= \delta(u) + 2 \quad \text{(BF)} \quad \text{in } G_f
\]

\(\Rightarrow \) Each time \((u,v)\) is critical, \(\delta(u) \) has increased by \(\geq 2 \).

\(\Rightarrow \) \((u,v)\) is critical \(\Theta(V) \) times, since \(0 \leq \delta(u) \leq |V| - 1 \).

Since residual graph has \(\Theta(E) \) edges,

\[
\# \text{augs} \leq \Theta(VE) \quad \blacksquare
\]

Thm: EK alg runs in time \(\Theta(VE^2) \)

PF: BFS & other ops take time \(\Theta(E) \) per augmentation.

Other alg: \(\Theta(V^3) \) Goldberg push/relabel (in book)

\(\Theta(VE \log \frac{E}{V}) \) King-Rao-Tarjan.