Intro to Models and Properties

Lecture 21
Recap

<table>
<thead>
<tr>
<th>Properties</th>
<th>Type Inference</th>
<th>Symbolic Execution</th>
<th>Abstract Interpretation</th>
<th>Model Checking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties of variables</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Flexible</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Push-button</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Model Checking Today

Hardware Model Checking
- **part of the standard toolkit for hardware design**
 - Intel has used it for production chips since Pentium 4
 - For the Intel Core i7, most pre-silicon validation was done through formal methods (i.e. Model Checking + Theorem Proving)
- **many commercial products**
 - IBM RuleBase, Synopsys Magellan, ...

Software Model Checking
- **Static driver verifier now a commercial Microsoft product**
- **Java PathFinder used to verify code for mars rover**

This doesn’t mean Model Checking is a solved problem
- **Far from it**
Model Checking Genesis

The paper that started it all

- Clarke and Emerson, *Design and Synthesis of Synchronization Skeletons using branching time temporal logic*

“Proof Construction is Unnecessary in the case of finite state concurrent systems and can be replaced by a model-theoretic approach which will mechanically determine if the system meets a specification expressed in propositional temporal logic”
Intellectual Roots

Two important developments preceded this paper

- Verification through exhaustive exploration of finite state models

- Development of Linear Temporal Logic and its application to specifying system properties
Model Checking

The model checking approach
(as characterized by Emerson)
- Start with a program that defines a finite state graph M
- Search M for patterns that tell you whether a specification f holds
- Pattern specification is flexible
- The method is efficient in the sizes of M and hopefully also f
- The method is algorithmic
So what exactly is a model?

Remember our friend ⊨?
- What does this mean? ⊨ x ∧ y ⇒ x
 - The statement above can be established through logical deduction
 - Axiomatic semantics and type theory are deductive
 - The program, together with the desired properties make a theorem
 - We use deduction to prove the theorem
- What about this; is it true? ⊨ x + y == 5
 - We can’t really establish this through deduction
 - We can say whether it’s true or false under a given model
 \[[x=3, y=2] \models x + y == 5 \]

You have seen this symbol too ⊨
- In operational semantics, the variable assignments were the model
- The program behavior was the theorem we were trying to prove under a given model
Consider the following sentence:
- \(S := \) The class today was awesome

Is this sentence true or false?
- that depends
 - What class is “the class”? What day is “today”?

We can give this sentence an Interpretation
- \(I := \) The class is 6.820, Today is Monday Nov 22

When an interpretation I makes S true we say that
- \(I \) satisfies S
- \(I \) is a model of S
- \(I \models S \)
The model checking problem

We are interested in deciding whether $I \models S$ for the special case where

- I is a Kripke structure
- S is a temporal logic formula

Today you get to learn what each of these things are

But the high level idea is:

- Unlike axiomatic semantics, where the program was part of the theorem,
- The program will now be the *model*
 - Well, not the program directly, but rather a kripke structure representing the program
Kripke Structures as Models

Kripke structure is a FSM with labels

Kripke structure = (S, S0, R, L)

- S = finite set of states
- S0 ⊆ S = set of initial states
- R ⊆ S x S = transition relation
- L : S → 2^AP = labels each state with a set of atomic propositions
Microwave Example

- \(S = \{s_1, s_2, s_3, s_4\} \)
- \(S_0 = \{s_1\} \)
- \(R = \{ (s_1, s_2), (s_2, s_1), (s_1, s_4), (s_4, s_2), (s_2, s_3), (s_3, s_2), (s_3, s_3) \} \)
- \(L(s_1) = \{-\text{close}, -\text{start}, -\text{cooking}\} \)
- \(L(s_2) = \{\text{close}, -\text{start}, -\text{cooking}\} \)
- \(L(s_3) = \{\text{close, start, cooking}\} \)
- \(L(s_4) = \{-\text{close, start, -cooking}\} \)

Can the microwave cook with the door open?
Kripke structures describe computations

A Kripke structure can describe an infinite process
- We can interpret it as an infinite tree
- We need a language to describe properties of paths down the computation tree
Linear Temporal Logic

Let π be a sequence of states in a path down the tree
- $\pi := s_0, s_1, s_2, \ldots$
- Let π_i be a subsequence starting at I

We are going to define a logic to describe properties over paths
For states

State Formulas
- Can be established as true or false on a given state
- If $p \in \{AP\}$ then p is a state formula
- if f and g are state formulas, so are $(f \text{ and } g)$, $(\neg f)$, $(f \text{ or } g)$
- Ex. $(\neg \text{ closed and cooking})$
For paths

Path formulas
- a state formula p is also a path formula
 - p(\(\pi_i\)) := p(\(s_i\))
- boolean operations on path formulas are path formulas
 - f and g(\(\pi_i\)) := f(\(\pi_i\)) and g(\(\pi_i\))
- path quantifiers
 - G f (\(\pi_i\)) := globally f (\(\pi_i\)) = forall k>= i f (\(\pi_k\)) (may abbreviate as \(\square\))
 - F f (\(\pi_i\)) := eventually f (\(\pi_i\)) = exists k>= i f (\(\pi_k\)) (may abbreviate as \(\Diamond\))
 - X f (\(\pi_i\)) := next f (\(\pi_i\)) = f (\(\pi_{i+1}\)) (may abbreviate as \(\circ\))
 - f U g (\(\pi_i\)) := f until g = exists k >= i s.t. g(\(\pi_k\)) and f(\(\pi_j\)) for i<=j<k

Given a formula f and a path \(\pi\),
- if f(\(\pi\)) is true, we say that \(\pi \models f\)
A Kripke structure represents a set of paths

- We want to establish the validity of a formula \(f \) under a Kripke structure \(M \) and a start state \(s \)

problem:

- formula is defined for a path, Kripke structure has many paths
CTL* Logic

Add two extra path quantifiers
- A f := for all paths, f
- E f := for some path, f

Two important subsets:
- LTL : all formulas of the form A f
 • Ex: A(FG p)
- CTL: there must be a path quantifier before every linear operator
 • Ex: AG (EF p)
- The two are strictly disjoint
 • A(F G p)
 • AG (EF p)
 • AG (EF p) or A(F G p)
Example:

What does the following formula mean
- $A(F \land G \land p)$

How about
- $A(F \land A \land G \land p)$

How about
- $A(F \land E \land G \land p)$