6.837 Computer Graphics
Bézier Curves and Splines

Fredo Durand
MIT CSAIL
Before We Begin

• Anything on your mind concerning Assignment 0?
• Any questions about the course?

• Assignment 1 (Curves & Surfaces) posted tomorrow
 – Due Wednesday September 29
• Linear Algebra review session
 – Wednesday Sep 22, 7:30pm
Today

• Curves in 2D
 – Useful in their own right
 – Provides basis for surface editing (Thursday)
Modeling 1D Curves in 2D

- **Polyline**
 - Sequence of vertices connected by straight line segments
 - Useful, but not for smooth curves
 - Very easy!
 - This is the representation that usually gets drawn in the end (smooth curves converted into these)

- **Smooth curves**
 - How do we specify them?
 - A little harder (but not too much)
Splines

- A type of smooth curve in the plane or in 3D
- Many uses
 - 2D Illustration (e.g. Adobe Illustrator)
 - Fonts
 - 3D Modeling
 - Animation: Trajectories
- In general: Interpolation and approximation
How Many Dimensions?
How Many Dimensions?

This curve lies on the 2D plane, but is itself 1D.

6.837 – Durand
How Many Dimensions?

This curve lies on the 2D plane, but is itself 1D.

You can just as well define 1D curves in 3D space.
Two Definitions of a Curve

• A continuous 1D point set on the plane or space
• A mapping from an interval S onto the plane
 – That is, $P(t)$ is the point of the curve at parameter t

$$P : \mathbb{R} \ni S \mapsto \mathbb{R}^2, \quad P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

• Big differences
 – It’s easy to generate points on the curve from the 2nd
 – The second definition can describe trajectories, the speed at which we move on the curve
General Principle of Splines

- User specifies **control points**
- We’ll interpolate the control points by a smooth curve
 - The curve is completely determined by the control points.
The ducks and spline are used to make tighter curves.
Two Points of View

- Approximation/interpolation
 - We have “data points”, how can we interpolate?
 - Important in lots of applications, both graphics and non-graphics

- User interface/modeling
 - What is an easy way to specify a smooth curve?
 - Our main perspective today.
Questions?
Splines

- Specified by a few control points
 - Good for UI
 - Good for storage

- Results in a smooth parametric curve $P(t)$
 - Just means that we specify $x(t)$ and $y(t)$
 - In practice: Low-order polynomials, chained together
 - Convenient for animation, where t is time
 - Convenient for *tessellation* because we can discretize t and approximate the curve with a polyline
Tessellation

- It's easy to rasterize mathematical line segments into pixels
 - OpenGL and the graphics hardware can do it for you
- But polynomials and other parametric functions are harder
To display $P(t)$, discretize it at discrete ts
It’s clear that adding more points will get us closer to the curve.
It’s clear that adding more points will get us closer to the curve.
Interpolation vs. Approximation

• Interpolation
 – Goes through all specified points
 – Sounds more logical

• Approximation
 – Does not go through all points
Interpolation vs. Approximation

• Interpolation
 – Goes through all specified points
 – Sounds more logical
 – But can be more unstable, “ringing”

• Approximation
 – Does not go through all points
 – Turns out to be convenient

• In practice, we’ll do something in between.

Tuesday, September 14, 2010
Questions?
Cubic Bézier Curve

- User specifies 4 control points $P_1 \ldots P_4$
- Curve goes through (interpolates) the ends P_1, P_4
- Approximates the two other ones
- Cubic polynomial
Cubic Bézier Curve

That is,

\[x(t) = (1 - t)^3 x_1 + 3t(1-t)^2 x_2 + 3t^2(1-t) x_3 + t^3 x_4 \]

\[y(t) = (1 - t)^3 y_1 + 3t(1-t)^2 y_2 + 3t^2(1-t) y_3 + t^3 y_4 \]
Cubic Bézier Curve

- \(P(t) = (1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t) P_3 + t^3 P_4 \)

Verify what happens for \(t=0 \) and \(t=1 \)
Cubic Bézier Curve

- 4 control points
- Curve passes through first & last control point
- Curve is tangent at P_1 to $(P_1 - P_2)$ and at P_4 to $(P_4 - P_3)$

A Bézier curve is bounded by the convex hull of its control points.
Cubic Bézier Curve

- 4 control points
- Curve passes through first & last control point
- Curve is tangent at P_1 to $(P_1 - P_2)$ and at P_4 to $(P_4 - P_3)$

A Bézier curve is bounded by the convex hull of its control points.
Questions?
What’s with the Formula?

• Explanation 1:
 – Magic!

• Explanation 2:
 – These are smart weights that describe the influence of each control point

• Explanation 3:
 – It’s a linear combination of basis polynomials.
Weights

- $P(t)$ is a weighted combination of the 4 control points with weights:
 - $B_1(t) = (1-t)^3$
 - $B_2(t) = 3t(1-t)^2$
 - $B_3(t) = 3t^2(1-t)$
 - $B_4(t) = t^3$

- First, P_1 is the most influential point, then P_2, P_3, and P_4
Weights

- P_2 and P_3 never have full influence
 - Not interpolated!

\[
P(t) = (1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t) P_3 + t^3 P_4
\]
Questions
What’s with the Formula?

• Explanation 1:
 – Magic!

• Explanation 2:
 – These are smart weights that describe the influence of each control point

• Explanation 3:
 – It’s a linear combination of basis polynomials.
 – The opposite perspective: control points are the weights of polynomials!!
 – Let’s study this in 1D using curves $y=f(t)$
Why study splines as vector space

- Understand relationships between types of splines
 - Conversion
- Express what happens when a spline curve is transformed by an affine transform (rotation, translation, etc.)
- In general, linearity is a useful property
 - Fall back to known case with lots of good properties
- Cool simple example of non-trivial vector space
- Important to understand for advanced methods such as finite elements
Usual Vector Spaces

• In 3D, each vector has three components x, y, z
• But geometrically, each vector is actually the sum

$$\mathbf{v} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$$

• $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are basis vectors

• Vector addition: just add components
• Scalar multiplication: just multiply components
Polynomials as a Vector Space

- Polynomials: \(y(t) = a_0 + a_1 t + a_2 t^2 + \ldots + a_n t^n \)
- Can be added: just add the coefficients
 \[
 (y + z)(t) = (a_0 + b_0) + (a_1 + b_1)t + (a_2 + b_2)t^2 + \ldots + (a_n + b_n)t^n
 \]
- Can be multiplied by a scalar: multiply the coefficients
 \[
 s \cdot y(t) = (s \cdot a_0) + (s \cdot a_1)t + (s \cdot a_2)t^2 + \ldots + (s \cdot a_n)t^n
 \]
Polynomials as a Vector Space

- In 3D, each vector has three components x, y, z
- But geometrically, each vector is actually the sum
 \[\mathbf{v} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \]
 \[\mathbf{j} \]
 \[\mathbf{k} \]
 \[\mathbf{i} \]
- $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are basis vectors
- In the polynomial vector space, \{1, t, ..., t^n\} are the basis vectors, $a_0, a_1, ..., a_n$ are the components
 \[y(t) = a_0 + a_1 t + a_2 t^2 + \ldots + a_n t^n \]
Subset of Polynomials: Cubic

\[y(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \]

- Closed under addition & scalar multiplication
 - Means the result is still a cubic polynomial (verify!)
- This means it is also a vector space, a 4D subspace of the full space of polynomials
 - How many dimensions does the full space have?
- The \(x \) and \(y \) coordinates of cubic Bézier curves belong to this subspace as functions of \(t \).
Basis for Cubic Polynomials

More precisely:

What’s a basis?

- A set of “atomic” vectors
 - Called basis vectors
 - Linear combinations of basis vectors span the space
 - i.e. any cubic polynomial is a sum of those basis cubics

- Linearly independent
 - Means that no basis vector can be obtained from the others by linear combination
 - Example: \mathbf{i}, \mathbf{j}, $\mathbf{i}+\mathbf{j}$ is not a basis (missing \mathbf{k} direction!)

\[\mathbf{v} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \]
Canonical Basis for Cubics

\{1, t, t^2, t^3\}

• Any cubic polynomial is a linear combination of these
 \[a_0 + a_1 t + a_2 t^2 + a_3 t^3 = a_0 \cdot 1 + a_1 \cdot t + a_2 \cdot t^2 + a_3 \cdot t^3\]

• They are linearly independent
 – Means you can’t write any of the four monomials as a linear combination of the others. (You can try.)
Different basis

- For example:
 - \{1, 1+t, 1+t+t^2, 1+t-t^2+t^3\}
 - \{t^3, t^3+t^2, t^3+t, t^3+1\}

- These can all be obtained from \(1, t, t^2, t^3\) by linear combination

- Infinite number of possibilities, just like you have an infinite number of bases to span \(\mathbb{R}^2\)

- For Bézier curves, the basis polynomials/vectors are Bernstein polynomials
Matrix-Vector Notation

• For example:
 - 1, $1+t$, $1+t+t^2$, $1+t-t^2+t^3$
 - t^3, t^3+t^2, t^3+t, t^3+1

These relationships hold for each value of t

\[
\begin{pmatrix}
1 \\
1 + t \\
1 + t + t^2 \\
1 + t - t^2 + t^3
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
t \\
t^2 \\
t^3
\end{pmatrix}
\]

\[
\begin{pmatrix}
t^3 \\
t^3 + t^2 \\
t^3 + t \\
t^3 + 1
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
t \\
t \\
t^2 \\
t^3
\end{pmatrix}
\]
Matrix-Vector Notation

- For example:
 - $1, 1+t, 1+t+t^2, 1+t-t^2+t^3$
 - $t^3, t^3+t^2, t^3+t, t^3+1$

$$
\begin{pmatrix}
1 \\
1+t \\
1+t+t^2 \\
1+t-t^2+t^3
\end{pmatrix}
=\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
t \\
t^2 \\
t^3
\end{pmatrix}
$$

- Not any matrix will do! If it’s singular, the basis set will be linearly dependent, i.e., redundant and incomplete.
Bernstein Polynomials

For cubic:
- $B_1(t) = (1-t)^3$
- $B_2(t) = 3t(1-t)^2$
- $B_3(t) = 3t^2(1-t)$
- $B_4(t) = t^3$

- (careful with indices, many authors start at 0)
- But defined for any degree
Properties of Bernstein polynomials

- ≥ 0 for all $0 \leq t \leq 1$
- Sum to 1 for every t
 - called *partition of unity*
- These two together are the reason why Bézier curves lie within convex hull
- Only B_1 is non-zero at 0
 - Bezier interpolates P_1
 - Same for B_4 and P_4 for $t=1$
Bézier in Bernstein basis

- \(P(t) = P_1 B_1(t) + P_2 B_2(t) + P_3 B_3(t) + P_4 B_4(t) \)
 - \(P_i \) are 2D points \((x_i, y_i)\)

- \(P(t) \) is a linear combination of the control points with weights the Bernstein polynomials at \(t \)

- But at the same time, the control points \((P_1, P_2, P_3, P_4)\) are the “coordinates” of the curve in the Bernstein basis
 - In this sense, specifying a Bézier curve with control points is exactly like specifying a 2D point with its \(x \) and \(y \) coordinates.
Two different vector spaces!!!

- The plane where the curve lies, a 2D vector space
- The space of cubic polynomials, a 4D space
- Don’t be confused!
- The 2D control points can be replaced by 3D points – this yields space curves.
 - The math stays the same, just add $z(t)$.
- The cubic basis can be extended to higher-order polynomials
 - More control points
 - Higher-dimensional vector space
Questions?
How do we go from Bernstein basis to the canonical monomial basis $1, t, t^2, t^3$ and back?

– With a matrix!

$$
\begin{pmatrix}
B_1(t) \\
B_2(t) \\
B_3(t) \\
B_4(t)
\end{pmatrix}
= \begin{pmatrix}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
t \\
t^2 \\
t^3
\end{pmatrix}
$$

- $B_1(t) = (1-t)^3$
- $B_2(t) = 3t(1-t)^2$
- $B_3(t) = 3t^2(1-t)$
- $B_4(t) = t^3$
Cubic Bernstein:
- $B_1(t) = (1-t)^3$
- $B_2(t) = 3t(1-t)^2$
- $B_3(t) = 3t^2(1-t)$
- $B_4(t) = t^3$

Expand these out and collect powers of t. The coefficients are the entries in the matrix B!

$$
\begin{pmatrix}
B_1(t) \\
B_2(t) \\
B_3(t) \\
B_4(t)
\end{pmatrix}
=
\begin{pmatrix}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
t \\
t^2 \\
t^3
\end{pmatrix}
$$
Change of Basis, Other Direction

- Given \(B_1 \ldots B_4 \), how to get back to canonical \(1, t, t^2, t^3 \)?

\[
\begin{pmatrix}
B_1(t) \\
B_2(t) \\
B_3(t) \\
B_4(t)
\end{pmatrix} =
\begin{pmatrix}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
t \\
t^2 \\
t^3
\end{pmatrix}
\]

6.837 – Durand
Change of Basis, Other Direction

That’s right, with the inverse matrix!

- Given $B_1...B_4$, how to get back to canonical $1, t, t^2, t^3$?

\[
\begin{pmatrix}
1 \\
t \\
t^2 \\
t^3
\end{pmatrix}
= \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1/3 & 2/3 & 1 \\
0 & 0 & 1/3 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
B_1(t) \\
B_2(t) \\
B_3(t) \\
B_4(t)
\end{pmatrix}
\]

6.837 – Durand
Recap

• Cubic polynomials form a vector space.
• Bernstein basis is canonical for Bézier.
 – Can be seen as influence function of data points
 – Or data points are coordinates of the curve in the Bernstein basis
• We can change between basis with matrices.
More Matrix-Vector Notation

• Remember:

\[P(t) = \sum_{i=1}^{4} P_i B_i(t) = \sum_{i=1}^{4} \begin{pmatrix} x_i \\ y_i \end{pmatrix} B_i(t) \]

• or, in matrix-vector notation

\[\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{pmatrix} \begin{pmatrix} B_1(t) \\ B_2(t) \\ B_3(t) \\ B_4(t) \end{pmatrix} \]

point on curve (2x1 vector)
matrix of control points (2 x 4)
Bernstein polynomials (4x1 vector)
Flashback

\[
\begin{pmatrix}
B_1(t) \\
B_2(t) \\
B_3(t) \\
B_4(t)
\end{pmatrix}
= \begin{pmatrix}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
t \\
t^2 \\
t^3
\end{pmatrix}
\]
Phase 3: Profit (again)

- Cubic Bézier in matrix notation

\[
P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}
\]

Point on curve
(2x1 vector)

"Geometry matrix"
of control points P₁..P₄
(2 x 4)

"Spline matrix"
(Bernstein)

Canonical monomial basis

Tuesday, September 14, 2010
General Spline Formulation

\[Q(t) = GBT(t) = \text{Geometry } G \cdot \text{Spline Basis } B \cdot \text{Power Basis } T(t) \]

• Geometry: control points coordinates assembled into a matrix \((P_1, P_2, \ldots, P_{n+1})\)
• Spline matrix: defines the type of spline
 – Bernstein for Bézier
• Power basis: the monomials \((1, t, \ldots, t^n)\)
• Advantage of general formulation
 – Compact expression
 – Easy to convert between types of splines
 – Dimensionality (plane or space) doesn’t really matter
Question?
A Cubic Only Gets You So Far

• What if you want more control?
Higher-Order Bézier Curves

• > 4 control points
• Bernstein Polynomials as the basis functions
 – For polynomial of order n, the i\(^{th}\) basis function is

\[
B_i^n(t) = \frac{n!}{i!(n-i)!} t^i (1-t)^{n-i}
\]

• Every control point affects the entire curve
 – Not simply a local effect
 – More difficult to control for modeling

• You will not need this in this class
Subdivision of a Bézier curve

• Can we split a Bezier curve into two in the middle, using two new Bézier curves?
 – Would be useful for adding detail, as a single cubic doesn’t get you very far, and higher-order curves are nasty.
Subdivision of a Bezier curve

• Can we split a Bezier curve into two in the middle, using two Bézier curves?
 – The resulting curves are again a cubic (Why? A cubic in t is also a cubic in $2t$)
 – Hence it must be representable using the Bernstein basis. So yes, we can!
De Casteljau Construction

- Take the middle point of each of the 3 segments
- Construct the two segments joining them
- Take the middle of those two new segments
- Join them
- Take the middle point P'''

\[P' \]
\[P''_1 \]
\[P''_2 \]
\[P'_{1} \]
\[P'_{3} \]
\[P''' \]
The two new curves are defined by
- \(P_1, P'_1, P''_1, \) and \(P''' \)
- \(P''', P''_2, P'_3, \) and \(P_4 \)

Together they exactly replicate the original curve!
- Originally 4 control points, now 7 (more control)

Result of Split in Middle
Sanity Check

• Do we get the middle point?
• $B_1(t) = (1-t)^3$
• $B_2(t) = 3t(1-t)^2$
• $B_3(t) = 3t^2(1-t)$
• $B_4(t) = t^3$

\[P'_1 = 0.5(P_1 + P_2) \]
\[P'_2 = 0.5(P_2 + P_3) \]
\[P'_3 = 0.5(P_3 + P_4) \]

\[P''_1 = 0.5(P'_1 + P'_2) \]
\[P''_2 = 0.5(P'_2 + P'_3) \]
\[P''_3 = 0.5(P'_3 + P'_4) \]

\[P''' = 0.5(P''_1 + P''_2) \]
\[= 0.5 \left(0.5(P'_1 + P'_2) + 0.5(P'_2 + P'_3) \right) \]
\[= 0.5 \left(0.5 \left[0.5(P_1 + P_2) + 0.5(P_2 + P_3) \right] + 0.5 \left[0.5(P_2 + P_3) + 0.5(P_3 + P_4) \right] \right) \]
\[= 1/8P_1 + 3/8P_2 + 3/8P_3 + 1/8P_4 \]
De Casteljau Construction

- Actually works to construct a point at any t, not just 0.5
- Just subdivide the segments with ratio $(1-t)$, t (not in the middle)
Recap

- Bezier curves: Piecewise polynomials
- Linear combination of basis functions
 - Coefficient = control point
- Bernstein basis
- All linear, matrix algebra
- Subdivision by de Casteljau algorithm
- Be careful with the ordering of basis functions, there is no single convention in the literature!
 - Spline matrices may be transposed, reordered etc.
That’s All for Today, Folks

• Further reading
 – Buss, Chapters 7 and 8

 – Fun stuff to know about function/vector spaces

• **Inkscape** is an open source vector drawing program for Mac/Windows. Try it out!
Questions?
• What if we want to transform each point on the curve with a linear transformation M?

\[
P'(t) = M \begin{pmatrix} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}
\]
Linear Transformations & Cubics

What if we want to transform each point on the curve with a linear transformation M?

- Because everything is linear, it’s the same as transforming the only the control points!

$$P'(t) = M \left(\begin{array}{cccc} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \end{array} \right) \left(\begin{array}{cccc} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 \\ t \\ t^2 \\ t^3 \end{array} \right)$$

$$= M \left(\begin{array}{cccc} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \end{array} \right) \left(\begin{array}{cccc} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 \\ t \\ t^2 \\ t^3 \end{array} \right)$$
Linear Transformations & Cubics

• Homogeneous coordinates also work!
 – Means you can translate, rotate, shear, etc.
 – You can do even perspective transformations!

 • Note though that you need to normalize P' by $1/w$

$$P'(t) = \begin{pmatrix} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}$$

$$= \begin{pmatrix} P_{1,x} & P_{2,x} & P_{3,x} & P_{4,x} \\ P_{1,y} & P_{2,y} & P_{3,y} & P_{4,y} \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}$$
Questions?
Orders of Continuity

- $C^0 = \text{continuous}$
 - The seam can be a sharp kink
- $G^1 = \text{geometric continuity}$
 - Tangents **point to the same direction** at the seam
- $C^1 = \text{parametric continuity}$
 - Tangents **are the same** at the seam, implies G^1
- $C^2 = \text{curvature continuity}$
 - Tangents and their derivatives are the same
Connecting Cubic Bézier Curves

- How can we guarantee C^0 continuity?
- How can we guarantee G^1 continuity?
- How can we guarantee C^1 continuity?
- C^2 and higher gets difficult, no real solutions.
Connecting Cubic Bézier Curves

- Where is this curve
 - C^0 continuous?
 - G^1 continuous?
 - C^1 continuous?

- What’s the relationship between:
 - the # of control points, and the # of cubic Bézier subcurves?
Cubic BSplines

- ≥ 4 control points
- Locally cubic
 - Cubics chained together, again.
Cubic BSplines

- \(\geq 4 \) control points
- Locally cubic
 - Cubics chained together, again.
Cubic BSplines

- \(\geq 4 \) control points
- Locally cubic
 - Cubics chained together, again.
Cubic BSplines

- ≥ 4 control points
- Locally cubic
 - Cubics chained together, again.
Cubic BSplines

- \(\geq 4 \) control points
- Locally cubic
 - Cubics chained together, again.
- Curve is not constrained to pass through any control points

A BSpline curve is also bounded by the convex hull of its control points.
Cubic BSplines: Basis

\[B_1(t) = \frac{1}{6}(1 - t)^3 \]

\[B_3(t) = 16(-3t^3 + 3t^2 + 3t + 1) \]

\[B_2(t) = \frac{1}{6}(3t^3 - 6t^2 + 4) \]

\[B_4(t) = \frac{1}{6}t^3 \]

6.837 – Durand

Tuesday, September 14, 2010
Cubic BSplines: Basis

\[Q(t) = \left(\frac{1-t}{6} \right)^3 P_{i-3} + \left(\frac{3t^3 - 6t^2 + 4}{6} \right) P_{i-2} + \left(\frac{-3t^3 + 3t^2 + 3t + 1}{6} \right) P_{i-1} + \left(\frac{t^3}{6} \right) P_i \]

\[Q(t) = \text{GBT}(t) \]

Basis BSpline:

\[B_{B-Spline} = \frac{1}{6} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 4 & 0 & -6 & 3 \\ 1 & 3 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]
Cubic BSplines

- Local control (windowing)
- Automatically C^2, no need to match up tangents!
BSpline Curve Control Points

Default BSpline

BSpline with derivative discontinuity

Repeat interior control point

BSpline which passes through end points

Repeat end points

6.837 – Durand

87
Bézier is not the same as BSpline

- Relationship to the control points is different

Bézier

BSpline
Bézier is not the same as BSpline
Converting between Bézier & BSpline

- Simple with the basis matrices!

\[B_{\text{Bez}} = \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[B_{\text{Bspline}} = \frac{1}{6} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 4 & 0 & -6 & 3 \\ 1 & 3 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

- \(G B_1 B_2^{-1} \) are the control points in new basis.

\[Q(t) = GBT(t) = \text{Geometry } G \cdot \text{Spline Basis } B \cdot \text{Power Basis } T(t) \]
Why Bother with B-Splines?

• Isn’t Bézier good enough?

• Think of specifying a trajectory of an object over time. If t ranged originally from 0 to 1, inserting the control point makes it range from 0 to 2. I.e., the edit affects the whole subsequent trajectory!
Why Bother with B-Splines?

• B-Splines can be split into segments of non-uniform length without affecting the global parametrization.
 – “Non-uniform B-Splines”
 – We’ll not do this, but just so you know.

• Also, automatic C^2 is nice!
NURBS (generalized BSplines)

• BSpline: uniform cubic BSpline
• Rational Bezier/cubic
 – Use homogeneous coordinates
• NURBS: Non-Uniform Rational BSpline
 – non-uniform =
 different spacing between the blending functions,
 a.k.a. “knots”
 – rational =
 ratio of cubic polynomials (instead of just cubic)
Brain Teaser

• Can you represent circles using cubics?
 – If yes, how?
 – If no, can you tell what more is needed?
That’s All for Today, Folks

• Further reading
 – Buss, Chapters 7 and 8
 – Fun stuff to know about function/vector spaces

• **Inkscape** is an open source vector drawing program for Mac/Windows. Try it out!