3 ways to pass arguments to a function

- by value, e.g. float f(float x)
- by reference, e.g. float f(float &x)
 - f can modify the value of x
- by pointer, e.g. float f(float *x)
 - x here is just a memory address
 - motivations:
 - less memory than a full data structure if x has a complex type
 - dirty hacks (pointer arithmetic), but just don’t do it
 - clean languages don’t use pointers
 - kind of redundant with reference
 - arrays are pointers
Pointers

- Can get it from a variable using
 - often a BAD idea. see next slide
- Can be dereferenced with *
 - float *px=new float; // x is a memory address to a float
 - *px=5.0; //modify the value at the address px
- Should be instantiated with new. See next slide
Pointers, heap, stack

- Two ways to create objects
 - The BAD way, on the stack
 - `myObject *f() {
 - myObject x;
 - ...
 - return &x
 }

 - will crash because x is defined only locally and the memory gets de-allocated when you leave function f
 - The GOOD way, on the heap
 - `myObject *f() {
 - myObject *x=new myObject;
 - ...
 - return x
 }

 - but then you will probably eventually need to delete it
Segmentation fault

- When you read or, worse, write at an invalid address
- Easiest segmentation fault:
 - `float *px; // x is a memory address to a float`
 - `*px=5.0; // modify the value at the address px`
 - Not 100% guaranteed, but you haven’t instantiated px, it could have any random memory address.
- 2nd easiest seg fault
 - `Vector<float> vx(3);`
 - `vx[9]=0;`
Segmentation fault

- TERRIBLE thing about segfault: they don’t necessarily crash where you caused the problem
- You might write at an address that is inappropriate but that exists
- You corrupt data or code at that location
- Next time you get there, crash

- When a segmentation fault occurs, always look for pointer or array operations before the crash, but not necessarily at the crash
Debugging

• Display as much information as you can
 – image maps (e.g. per-pixel depth, normal)
 – OpenGL 3D display (e.g. vectors, etc.)
 – cerr<< or cout<< (with intermediate values, a message when you hit a given if statement, etc.)

• Doubt everything
 – Yes, you’re sure this part of the code works, but test it nonetheless

• Use simple cases
 – e.g. plane $z=0$, ray with direction $(1, 0, 0)$
 – and display all intermediate computation
Questions?
Tuesday Recap

- Intro to rendering
 - Producing a picture based on scene description
 - Main variants: Ray casting/tracing vs. rasterization
 - Ray casting vs. ray tracing (secondary rays)

- Ray Casting basics
 - Camera definitions
 - Orthographic, perspective
 - Ray representation
 - \(P(t) = \text{origin} + t \times \text{direction} \)
 - Ray generation
 - Ray/plane intersection
 - Ray-sphere intersection
Questions?
Ray-Triangle Intersection

• Use ray-plane intersection followed by in-triangle test
• Or try to be smarter
 – Use barycentric coordinates
Barycentric Definition of a Plane

• A (non-degenerate) triangle \((a, b, c)\) defines a plane
• Any point \(P\) on this plane can be written as
 \[P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c, \]
 with \(\alpha + \beta + \gamma = 1\)

Why? How?

[Moebius, 1827]
Barycentric Coordinates

- Since $\alpha + \beta + \gamma = 1$, we can write $\alpha = 1 - \beta - \gamma$

 $P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$

 $P(\beta, \gamma) = (1 - \beta - \gamma) a + \beta b + \gamma c$

 $= a + \beta (b - a) + \gamma (c - a)$

Non-orthogonal coordinate system on the plane!

Vectors that lie on the triangle plane!
Barycentric Definition of a Plane

- \(P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c \)
 with \(\alpha + \beta + \gamma = 1 \)

- Is it explicit or implicit?

Fun to know:

\(P \) is the barycenter, the single point upon which the triangle would balance if weights of size \(\alpha, \beta, \& \gamma \) are placed on points \(a, b \& c \).
Barycentric Definition of a Triangle

- \(\mathbf{P}(\alpha, \beta, \gamma) = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} \)
 with \(\alpha + \beta + \gamma = 1 \) parametrizes the entire plane
Barycentric Definition of a Triangle

- **P(α, β, γ) = αa + βb + γc**
 with α + β + γ = 1 parametrizes the entire plane

- If we require in addition that α, β, γ >= 0, we get just the triangle!
 - Note that with α + β + γ = 1 this implies
 0 < α < 1 & 0 < β < 1 & 0 < γ < 1
 - Verify:
 - α=0 => P lies on line b-c
 - α,β=0 => P = c
 - etc.
How Do We Compute α, β, γ?

- Ratio of opposite sub-triangle area to total area
 - $\alpha = \frac{A_a}{A}$ $\beta = \frac{A_b}{A}$ $\gamma = \frac{A_c}{A}$

- Use signed areas for points outside the triangle
How Do We Compute α, β, γ?

- Or write it as a 2x2 linear system
- $P(\beta, \gamma) = a + \beta e_1 + \gamma e_2$

 - $e_1 = (b-a), e_2 = (c-a)$

\[a + \beta e_1 + \gamma e_2 - P = 0 \]

This should be zero
How Do We Compute α, β, γ?

- Or write it as a 2x2 linear system
- $\mathbf{P}(\beta, \gamma) = a + \beta e_1 + \gamma e_2$
- $e_1 = (b-a), \ e_2 = (c-a)$

$$a + \beta e_1 + \gamma e_2 - \mathbf{P} = 0$$

This should be zero

Something’s wrong...
This is a linear system of 3 equations and 2 unknowns!
How Do We Compute α, β, γ?

- Or write it as a 2x2 linear system

$$P(\beta, \gamma) = a + \beta e_1 + \gamma e_2$$

- $e_1 = (b-a), e_2 = (c-a)$

$$\langle e_1, a + \beta e_1 + \gamma e_2 - P \rangle = 0$$

$$\langle e_2, a + \beta e_1 + \gamma e_2 - P \rangle = 0$$

These should be zero

Ha! We’ll take inner products of this equation with $e_{1,2}$
How Do We Compute α, β, γ?

- Or write it as a 2x2 linear system
- $P(\beta, \gamma) = a + \beta e_1 + \gamma e_2$

 - $e_1 = (b-a)$, $e_2 = (c-a)$
 - $\langle e_1, a + \beta e_1 + \gamma e_2 - P \rangle = 0$
 - $\langle e_2, a + \beta e_1 + \gamma e_2 - P \rangle = 0$

\[
\begin{pmatrix}
\langle e_1, e_1 \rangle & \langle e_1, e_2 \rangle \\
\langle e_2, e_1 \rangle & \langle e_2, e_2 \rangle
\end{pmatrix}
\begin{pmatrix}
\beta \\
\gamma
\end{pmatrix} =
\begin{pmatrix}
c_1 \\
c_2
\end{pmatrix}
\]

where
\[
\begin{pmatrix}
c_1 \\
c_2
\end{pmatrix} = \begin{pmatrix}
\langle (P - a), e_1 \rangle \\
\langle (P - a), e_2 \rangle
\end{pmatrix}
\]

and $\langle a, b \rangle$ is the dot product.
Questions?
Intersection with Barycentric Triangle

• Again, set ray equation equal to barycentric equation
 \[P(t) = P(\beta, \gamma) \]
 \[R_o + t \cdot R_d = a + \beta(b-a) + \gamma(c-a) \]

• Intersection if \(\beta + \gamma < 1 \) \& \(\beta > 0 \) \& \(\gamma > 0 \)
 (and \(t > t_{\text{min}} \ldots \))
Intersection with Barycentric Triangle

- \(\mathbf{R}_o + t \mathbf{R}_d = \mathbf{a} + \beta (\mathbf{b} - \mathbf{a}) + \gamma (\mathbf{c} - \mathbf{a}) \)

 \[
 \begin{align*}
 R_{ox} + tR_{dx} &= a_x + \beta(b_x-a_x) + \gamma(c_x-a_x) \\
 R_{oy} + tR_{dy} &= a_y + \beta(b_y-a_y) + \gamma(c_y-a_y) \\
 R_{oz} + tR_{dz} &= a_z + \beta(b_z-a_z) + \gamma(c_z-a_z)
 \end{align*}
 \]

- Regroup & write in matrix form \(\mathbf{A}x = \mathbf{b} \)

\[
\begin{bmatrix}
 a_x - b_x & a_x - c_x & R_{dx} \\
 a_y - b_y & a_y - c_y & R_{dy} \\
 a_z - b_z & a_z - c_z & R_{dz}
\end{bmatrix}
\begin{bmatrix}
 \beta \\
 \gamma \\
 t
\end{bmatrix}
= \begin{bmatrix}
 a_x - R_{ox} \\
 a_y - R_{oy} \\
 a_z - R_{oz}
\end{bmatrix}
\]

3 equations, 3 unknowns
Cramer’s Rule

- Used to solve for one variable at a time in a system of equations

\[
\beta = \frac{a_x - R_{ox} \ a_x - c_x \ R_{dx}
\begin{vmatrix} a_x - R_{ox} & a_x - c_x & R_{dx} \\ a_y - R_{oy} & a_y - c_y & R_{dy} \\ a_z - R_{oz} & a_z - c_z & R_{dz} \end{vmatrix}}{|A|}
\]

\[
\gamma = \frac{a_x - b_x \ a_x - R_{ox} \ R_{dx}
\begin{vmatrix} a_x - b_x & a_x - R_{ox} & R_{dx} \\ a_y - b_y & a_y - R_{oy} & R_{dy} \\ a_z - b_z & a_z - R_{oz} & R_{dz} \end{vmatrix}}{|A|}
\]

\[
t = \frac{a_x - b_x \ a_x - c_x \ a_x - R_{ox}
\begin{vmatrix} a_x - b_x & a_x - c_x & a_x - R_{ox} \\ a_y - b_y & a_y - c_y & a_y - R_{oy} \\ a_z - b_z & a_z - c_z & a_z - R_{oz} \end{vmatrix}}{|A|}
\]

\[
\begin{vmatrix} a_x - R_{ox} & a_x - c_x & a_x - R_{ox} \\ a_y - R_{oy} & a_y - c_y & a_y - R_{oy} \\ a_z - R_{oz} & a_z - c_z & a_z - R_{oz} \end{vmatrix}
\]

\[
| \quad | \text{denotes the determinant}
\]

Can be copied mechanically into code
Barycentric Intersection Pros

- Efficient
- Stores no plane equation
- Get the barycentric coordinates for free
 - Useful for interpolation, texture mapping
Barycentric Interpolation

- Values v_1, v_2, v_3 defined at a, b, c
 - Colors, normal, texture coordinates, etc.
- $P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$ is the point...
- $v(\alpha, \beta, \gamma) = \alpha v_1 + \beta v_2 + \gamma v_3$ is the barycentric interpolation of v_1-v_3 at point P
 - Sanity check: $v(1,0,0) = v_1$, etc.
- I.e, once you know $\alpha, \beta, \gamma, v_1$ you can interpolate values using the same weights.
 - Convenient!
Questions?

- Image computed using the RADIANCE system by Greg Ward
Ray Casting: Object oriented design

For every pixel
 Construct a ray from the eye
For every object in the scene
 Find intersection with the ray
 Keep if closest
Object-Oriented Design

• We want to be able to add primitives easily
 – Inheritance and virtual methods
• Even the scene is derived from Object3D!

![Diagram of Object3D and its subclasses](image)

• Also cameras are abstracted (perspective/ortho)
 – Methods for generating rays for given image coordinates
Assignment 4 & 5: Ray Casting/Tracing

- Write a basic ray caster
 - Orthographic and perspective cameras
 - Spheres and triangles
 - 2 Display modes: color and distance
- We provide classes for
 - Ray: origin, direction
 - Hit: t, Material, (normal)
 - Scene Parsing
- You write ray generation, hit testing, simple shading
Books

- Peter Shirley et al.: *Fundamentals of Computer Graphics*
 AK Peters

- Ray Tracing
 - Jensen
 - Shirley
 - Glassner

Remember the ones at books24x7 mentioned in the beginning!
Constructive Solid Geometry (CSG)

• A neat way to build complex objects from simple parts using Boolean operations
 – Very easy when ray tracing

• Remedy used this in the Max Payne games for modeling the environments
 – Not so easy when not ray tracing :)

Tuesday, October 26, 2010
CSG Examples
Constructive Solid Geometry (CSG)

Given overlapping shapes A and B:

- **Union**: Should only "count" overlap region once!
- **Intersection**:
- **Subtraction**:

Tuesday, October 26, 2010
How can we implement CSG?

4 cases

Union

Intersection

Subtraction

Points on A, Outside of B

Points on B, Inside of A

Points on B, Outside of A

Points on A, Inside of B
Collect Intersections

Each ray processed separately!
1. Test "inside" intersections:
 • Find intersections with A, test if they are inside/outside B
 • Find intersections with B, test if they are inside/outside A

This would certainly work, but would need to determine if points are inside solids...
Implementing CSG

1. Test "inside" intersections:
 - Find intersections with A, test if they are inside/outside B
 - Find intersections with B, test if they are inside/outside A

2. Overlapping intervals:
 - Find the intervals of "inside" along the ray for A and B
 - How? Just keep an “entry” / “exit” bit for each intersection
 - Easy to determine from intersection normal and ray direction
 - Compute union/intersection/subtraction of the intervals
Implementing CSG

Problem reduces to 1D for each ray

2. Overlapping intervals:
 • Find the intervals of "inside" along the ray for A and B
 • How? Just keep an “entry” / “exit” bit for each intersection
 • Easy to determine from intersection normal and ray direction
 • Compute union/intersection/subtraction of the intervals
CSG is Easy with Ray Casting...

...but very hard if you actually try to compute an explicit representation of the resulting surface as a triangle mesh

In principle very simple, but floating point numbers are not exact

- E.g., points do not lie exactly on planes...
- Computing the intersection A vs B is not necessarily the same as B vs A...
- The line that results from intersecting two planes does not necessarily lie on either plane...
- etc., etc.
CSG Raytraced Image à la Fredo
Questions?
Precision

• What happens when
 – Ray Origin lies on an object?
 – Grazing rays?

• Problem with floating-point approximation
The evil ε

- In ray tracing, do NOT report intersection for rays starting at the surface
 - Secondary rays will start at the surfaces
 - Requires epsilons
 - Best to nudge the starting point off the surface e.g., along normal

MIT EECS 6.837 – Durand
The evil ε

- Edges in triangle meshes
 - Must report intersection (otherwise not watertight)
 - Hard to get right
Questions?
Transformations and Ray Casting

- We have seen that transformations such as affine transforms are useful for modeling & animation
- How do we incorporate them into ray casting?
Incorporating Transforms

1. Make each primitive handle any applied transformations and produce a camera space description of its geometry

 Transform {
 Translate { 1 0.5 0 }
 Scale { 2 2 2 }
 Sphere {
 center 0 0 0
 radius 1
 }
 }

2. ...Or Transform the Rays
Primitives Handle Transforms

 Sphere {
 center 3 2 0
 z_rotation 30
 r_major 2
 r_minor 1
}

- Complicated for many primitives
Transform the Ray

- Move the ray from *World Space* to *Object Space*

\[p_{WS} = M \quad p_{OS} \]

\[p_{OS} = M^{-1} \quad p_{WS} \]
Transform Ray

- New origin:
 \[\text{origin}_{OS} = M^{-1} \text{origin}_{WS} \]

- New direction:
 \[\text{direction}_{OS} = M^{-1} \left(\text{origin}_{WS} + 1 \times \text{direction}_{WS} \right) - M^{-1} \text{origin}_{WS} \]
 \[\text{direction}_{OS} = M^{-1} \text{direction}_{WS} \]

Note that the w component of direction is 0!
What about t?

- If M includes scaling, $direction_{OS}$ ends up NOT be normalized after transformation.

- Two solutions
 - Normalize the direction
 - Don't normalize the direction
1. Normalize direction

- $t_{OS} \neq t_{WS}$
 and must be rescaled after intersection

\Rightarrow One more possible failure case...
2. Don't normalize direction

- \(t_{OS} = t_{WS} \) \(\rightarrow \) convenient!
- But you should not rely on \(t_{OS} \) being true distance in intersection routines (e.g. \(a \neq 1 \) in ray-sphere test)
Transforming Points & Directions

• Transform point

\[
\begin{pmatrix}
x' \\
y' \\
z' \\
1
\end{pmatrix} =
\begin{pmatrix}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix} =
\begin{pmatrix}
ax+by+cz+d \\
ex+fy+gz+h \\
ix+jy+kz+l \\
1
\end{pmatrix}
\]

• Transform direction

\[
\begin{pmatrix}
x' \\
y' \\
z' \\
0
\end{pmatrix} =
\begin{pmatrix}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
0
\end{pmatrix} =
\begin{pmatrix}
ax+by+cz \\
ex+fy+gz \\
ix+jy+kz \\
0
\end{pmatrix}
\]

Homogeneous Coordinates:
\[(x, y, z, w)\]

\(w = 0\) is a point at infinity (direction)

• If you do not store \(w\) you need different routines to apply \(M\) to a point and to a direction ==> Store everything in 4D!
Recap: How to Transform Normals?

World Space

Object Space

\mathbf{n}_{WS}

\mathbf{n}_{OS}
Transformation for shear and scale

Incorrect Normal Transformation

Correct Normal Transformation
So how do we do it right?

• Think about transforming the tangent plane to the normal, not the normal vector

Pick any vector v_{OS} in the tangent plane, how is it transformed by matrix M?

$$v_{WS} = M v_{OS}$$
Transform tangent vector ν

ν is perpendicular to normal n:

Dot product

$$n_{OS}^T \nu_{OS} = 0$$

$$n_{OS}^T (M^{-1} M) \nu_{OS} = 0$$

$$(n_{OS}^T M^{-1}) (M \nu_{OS}) = 0$$

$$(n_{OS}^T M^{-1}) \nu_{WS} = 0$$

ν_{WS} is perpendicular to normal n_{WS}:

$$n_{WS}^T = n_{OS}^T (M^{-1})$$

$$n_{WS} = (M^{-1})^T n_{OS}$$

$$n_{WS}^T \nu_{WS} = 0$$
Position, direction, normal

- **Position**
 - transformed by the full homogeneous matrix M
- **Direction**
 - transformed by M except the translation component
- **Normal**
 - transformed by M^{-T}, no translation component
Questions?
Questions?

• Further reading
 – Realistic Ray Tracing, 2nd ed. (Shirley, Morley)